A Methodology for automatic generation of Register
related Verification environment and Firmware heade

Ir's

Saurin Patel, Mukesh Chopra, Bhawna Chopra

STMicroelectronics, Greater Noida, India
{saurin.patel, mukesh.chopra, bhawna.chopra}@st.com

DESIG

I

bank RTL,

IGN
AUTOMATION

Flow Overview

_Syst_er?1\7eﬁlo_g_he_a5erfﬁe_ T

Goal: To provide a methodology for various projects that should ensure
« Alignment of design specification with corresponding RTL implementation, related !
verification environment and firmware headers. 1
* Increased productivity through push button flow to generate thousands of lines of RTL, :
verification code, ‘C, SystemVerilog, Assembly’ headers and debugging aids.
« Easy and automated integration of register bank into IP / Subsystem. A typical use
model is to assemble the register bank and algorithm block, generated by High Level
Synthesis from ‘C’ code to form an IP / Subsystem.

Mnemoric Map file

eVC: “vr_ad’,
“registear
intexface”

Cockpi,
<Manager

“SystemVerilog config file

/¥ Reg-ster definitions 4/

field rw_L
_field_rw_MASK
ip_field_rw

efine ip_A_KEGS_BASECE'hFL05400D

// Def:nitions for the bits in the REG_READ WRITE recister//

set type verilog

Modules

set modules |
{ip.xm1

}

(*ip_h_REGS_BASE+31'he)

(*ir_A REGS BASE + 'h ((x) ¥ "14000))

Register bank files generation from Spec

TCL Input format

MIF Input format

adéNemoryMap nem IFECLREAD,WR”E" example register|
[écaddressBlock DEFAULT_ALTR register v] S N T = }
adéRegister EEC_READ_WRITE Cx "ais -5 a iszers Fra 2 | = | T |
adchield tie-dow Eukzesd - = [Address:) ArcticBaseAddress + 0x009

Type:y
SPIRIT Database UZI ey

example registet

iregister>

| [55] Jeld_o read only felof

120] feld_r log.
1 (G540LE) st e e reucong

I EnsaLE &

‘C’ header file

[rdcrine CEEG_READ_WRITE

VHDL package file

CONPONENT regbank
GENERIC

T1_REG_BASE_ADDRESS integer

sorr

§write protection diashle m

‘C’ hardware defines

Used for "field rw" (@
LE

REG_READ_WRITE)

x
x

v

v
Verilog fragment of Register slice

((x) &'007) <<0)

Assembly config file

(o) Set type assembly

(("ip_field_rw MASX) << ('ip_field_ru_LSB}) # Modules

set modules
{ip.snl

D

e Ir_A_REGS_BAS

Assembly header file !

RS

.

Mnemonic Map (.svcf)

Tmap new -teuse -name (New mapl

REG_READ_WRTTE reqister
(2)

(0)
(ox07)
((ip_field rw

e 1

cCursor «

1

always ©(posedge clock or negedge reset n) begin

if (~reset_n] begin

//Reset states of Registers
tield rwlz:0] <= 3'hz;

end

else begin

//71 Write section

(eI e
g
IDRES : begin
write_protection disable) begin
oz 0D~ data 2
end
//T1 Read section . . .
whee i (w0 (~epel3])) begin Special Register Behavior
case (addr[addr_w:
‘R) WRTTE BSS © begin [TTIF | Regbank TTest controller
r_data = field H
end 1
end H
end H
| CX H
Coverage B —
,
:
3
on REG READ WRITE road (
Ch k if (core_read_bus == REG_ROAD_WRTTH) {
ecker B e e STTNCYRMRE o35,
oy

Increased Reliability by reducing risk of errors as output is always aligned with specification

Improved cycle time

stage

Productivity gain

higher value added tasks
Standardization of the flow is based on IPXACT (IEEE P1685) standard, given by SPIRIT
Higher Reuse by using common inputs for RTL, verification, header and configuration generation

Results
Usage in more than 50 IPs

Demonstrated flow on many (~10) taped out chips
An example of 11000 lines of RTL code is generated in
2 minutes which could be reduced further

by reducing costly loops between firmware & hardware teams at a later

by having push button flow to reduce development costs and save time for

Constraint

v

Patterns

IR A

read reg rea read wrice;

write_reg reg_road write - e
aint (bits:£)
wrice req req read write -
Fead res oo weadwrite, ARCTIC
aint ibits:
aint ibits:

Invalid address check

B

Future Scope
Special behavi As IPXACT 1.5 supports special
registers, reduce use of additional configuration input.
Low Power: Think about concept of low power register
bank.

