
Constructing Electronic System Level Models Using
Simulink

Cheng-Chien Chen

No. 5, Li-Hsin Rd. III, Hsinchu City,
Taiwan 300, R. O. C.

886+3-578-7888 Ext. 8768

ken_chen@faraday-tech.com

ABSTRACT
Our work aims at introducing a methodology that adopts
nowadays existing tool to develop models that can be reused
repeatedly in the future. This methodology enables MATLAB
Simulink to involve in the entire SoC design phase from high
level abstract algorithm design all the way down to cycle-based
comprehensive hardware implementation, to consider
simultaneously both control plane and data plane design aspects.
Models constructed in this way offer versatile solutions that suit a
wide range of electronic system level (ESL) design requirements,
they can be integrated in pure software virtual platform,
VHDL/Verilog simulation environment, or hardware accelerated
simulation solutions. An intellectual property (IP) design project
is used as a case study, showing a significant improvement on
design flow and IP quality.

Keywords
Electronic system level (ESL), modeling, Simulink.

1. INTRODUCTION
As the design complexity increases, in order to secure the
implementation feasibility and time-to-market, the design
methodology has turned from transistor level, gate level, register
transfer level (RTL), to (the well-known but un-unified)
electronic system level (ESL). By definition, the ESL design
methodology aims to offer a solution to designing from the
system or application perspective. It tries to build up a design
flow that can perform algorithm/architecture exploration,
hardware/software co-simulation, and even verification in an
efficient and effective way. However, resulting from the variety
or diversity of the problem the system design may encounter, it is
hardly to have one unified design flow that can meet those
demands for all kinds of systems or applications.

In spite of the uncertainty and crudity of the ESL design flow and
tool sets current existing, all ESL technologies essentially share
two fundamental objectives: facilitating design reuse and
supporting design abstraction. From this point of view, we find
that a model with the following two objectives is the crucial
constituent towards ESL methodology.

1.1 Scalability
Among different design stages, an ESL model should be able to
support abstracting the design, validation analysis, and
implementation processes. Seamless migration between different
abstract levels links up high level system simulation with detail
function verification reliably.

1.2 Reusability
We usually acquire different tool sets to deal with different
system or application issues. Therefore, ESL model needs to be
integrated in C/C++ environments as well as in VHDL/Verilog

environments. Easy transformation or wrapping of the model to fit
to various tool sets or usage scenarios makes the model
extensively applicable.

In this article, we present a modeling methodology that can be
used to create models satisfying both of those two objectives.
These models can be system models, software models or
hardware models. Models constructed in this way are easy to be
implemented and integrated with. Designers with different
domains, system or IP element, hardware or software, digital or
analog, can manipulate this methodology to design and share their
models effectively.

2. SIMULINK-BASED MODEL DESIGN
METHODOLOGY
MATLAB's algorithm developing capability and Simulink's
model-based design methodology are well recognized and
adopted across industry and the academic world. The wide spread
of this tool makes EDA vendors support Simulink model as if it
were a standard. For software implementation, Real-Time
Workshop provides a very effective link with many software
development environments. As to FPGA solution, there are many
possibilities to generate synthesizable code from Simulink models.
For hardware implementation, Simulink HDL Coder is quiet
adequate for generating synthesizable Verilog and VHDL code.
Models constructed on such environment possess high reusability
in nature.

Furthermore, Simulink provides high flexibility in describing and
simulating heterogeneous systems. The design methodology, such
as state flow and graphical multi-domain simulation, makes the
model easy to be implemented, discussed, and integrated. Those
gripping features provide us with a fundamental environment for
developing high-reusable and high-scalable ESL models. The
outlook of our proposed Simulink model is as shown in Figure 1.
Base on this shell, we propose the following design
methodologies to guarantee high reusability and high scalability.

2.1 Handshaking Mechanism
Every module is activated according to the EventIn ports and the
granularity of the events enables swift switch between
transaction-level and cycle-level simulation. We maintain two
signals, accept and complete, for each RequestIn Ack port and
RequestOut Ack port. By utilizing these two signals, we can
accomplish the functionality of performing outstanding and
command buffering mechanism.

2.2 Interface Design
As design complexity continues to increase, the integration of the
constituent components of the system is a non-neglectable task,
having a significant impact on the quality of designs and on
development schedules. Therefore, the target of the interface
design is to make the modules be easily integrated, reorganized or

replaced for architecture exploration. To this end, we define a
universal interface for the RequestIn and RequestOut ports that
comprise three channels, slave index or address, function index or
data size, and message or data.

2.3 Design Language
State flow design methodology provides us with a nimble way
toward abstraction. We can simply redirect a state transition and
skip a comprehensive design by designing corresponding cost
functions or timing tables. It also provides a good presentation of
the design for both hardware and software components. Therefore,
we use Simulink Stateflow as the fundamental of the modeling
language.

3. CASE STUDY: AN IP DESIGN PROJECT
The proposed methodologies can be applied to system models,
software components, digital hardware designs, and analog
designs. Nevertheless, here we use a digital IP design project of
NAND FLASH controller as a case study. In this project, our
objective is to perform the architecture exploration of a FLASH
controller which bridges a high-speed IO and a FLASH array. The
whole system is considered to operate under Windows or Linux
operating systems.

We start with designing some basic and fundamental parts for
hardware design constructions, such as buffer-controller, protocol
handler, arbiter, and SRAM, to name a few. These components
are throughout verified to meet real hardware design capabilities.
Many benches and random tests are applied to ensure their
functionality and robustness. Also, an AHB bus and FLASH
memory models are modeled in this way.

Then we bundle up the characteristics of operating system, file
system, and high-speed IO link and design a component that
models how application system utilizes this controller. Context
switch duration, interrupt latency, sector size of the file system,
and the bulk size of the high-speed IO are all parameterized and
measured to cover a wide range of application scenarios. These
components, hardware design or system behavior, are configured,
assembled, and encapsulated into bigger constructs. A system
model is then quickly constructed out of these primitive
programmable components.

Taking the advantage of our interface design, we quickly build up
a simulation system that consists of an application workload, a
DMA, an AHB bus, an arbiter, some channel managers, two
shared SRAM FIFOs, and a FLASH farm, as depicted in Figure 2.
The overall simulation speed is around 200 times faster than RTL
simulation and thus we have the opportunity to investigate much
more system configurations.

This system allows for repeated analysis of the IP from various
application perspectives. Since many design aspects are
parameterized, we efficiently change many major system
conditions and generate lots of performance reports for
architecture exploration. We evaluate the IP performance under
SATA and USB3.0 use scenarios. Operating systems with
different context duration and interrupt latency are evaluated, too.
After a quick but overall exploration, we examine the
performance trends and check the conditions and performances
that look peculiar to us.

For example, through a throughout profiling, we observed that the
performance for low operating frequencies is not as good as
expected. As a result, we analyze the cycle behavior of the system,
as shown in Figure 3, and quickly find the defect of the algorithm
under such system condition. After modifying the arbitration
policy and the behavior of smart buffer, we successfully preserve
full bus utilization and gain 15% performance improvement
against the original design.

Besides, while developing the ECC engine of the NAND
controller, it is not easy to model the distribution of FLASH
errors using traditional design methodologies. Consequently, in
order to catch up with the schedule, designers are coerced to make
their decisions in the worst case only and this always leads to
over-designs. However, by adopting this methodology, we
quickly form a statistical model for FLASH errors and explore the
performance under nominal cases. We shortly find the over design
issue and modify the architecture to reduce the gate count to 57%
of the original design. Moreover, since the design is originally
derived under high operating frequencies, we also observe the
performance shortage in low frequencies and then enhance and
verify the corresponding architecture thereby.

In addition to the FLASH controller design case, we utilize this
methodology to develop DDR controller under customer’s
proprietary virtual platform and improve system performance
over 33%. We also successfully porting this DDR memory
subsystem, within one day, to Virtutech Simics simulation
environment and provide more precise memory access behavior
for multi-core project. Putting this model into Carbon simulation
environment through ARM CASI interface is also done rapidly.
Meanwhile, we manipulate such methodology to perform
pipelining and retiming design of ECC engine and seamlessly
provide a cycle-by-cycle verification environment for RTL design.
All demonstrate the broad scope of this proposed methodology.

4. CONCLUSIONS
Whereas cycle-based architecture design is usually viewed as a
missing part of Simulink, in this article, we have shown that
adopting Simulink environment to develop a high-reusable and
high-scalable model is practical and beneficial. Instead of
integrating various modeling languages and environments, we
effectively use Simulink to get all necessary design aspects done.
Models so created can be easily piled up, reorganized, and
configured on Simulink environment for architecture exploration.
Also, they are adequate to be the implementation basis and as a
communication bridge between different technology domains.
Their seamlessly abstracted versions can serve as the constituents
for higher level development. At the same time, they can be
converted to HDL to aid verification or become the hardware
components for emulation systems.

By distributing these models to various usage scenarios, we
receive many design feedbacks and, accordingly, we can refine
the abstract description of the design, the accuracy of the model,
and the design implementation simultaneously. Eventually, we
develop a set of multi-purpose models that can be used to explore
the architecture, to assist the design of different technology
domains, and accelerate the design and verification process. Thus,
without waiting for the convergence of the ESL toolsets, the
models and the corresponding designs help us to keep up with the
ESL trends constantly.

Module
Information

EventIn
ports

RequestIn
ports

RequestIn
Ack

RequestOut
ports

RequestOut
Ack

Profiling
ports

Figure 1. The outlook of an ESL model with one input port and one output port.

Figure 2. The FLASH system consists of different levels of ESL models.

Figure 3. A snapshot of the cycle behavior of the FIFO of the FLASH controller.

