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Goal: To provide a methodology for various projects that should ensure
« Alignment of design specification with corresponding RTL implementation, related !
verification environment and firmware headers. 1
* Increased productivity through push button flow to generate thousands of lines of RTL, :
verification code, ‘C, SystemVerilog, Assembly’ headers and debugging aids.
« Easy and automated integration of register bank into IP / Subsystem. A typical use
model is to assemble the register bank and algorithm block, generated by High Level
Synthesis from ‘C’ code to form an IP / Subsystem.
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field rw_L
_field_rw_MASK
ip_field_rw

efine ip_A_KEGS_BASECE'hFL05400D

// Def:nitions for the bits in the REG_READ WRITE recister//

set type verilog

# Modules

set modules |
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Register bank files generation from Spec
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Assembly config file

(o) Set type assembly

(("ip_field_rw MASX) << ('ip_field_ru_LSB}) # Modules

set modules
{ip.snl
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always ©(posedge clock or negedge reset n) begin

if (~reset_n] begin

//Reset states of Registers
tield rwlz:0] <= 3'hz;

end

else begin

//71 Write section

(eI e
g
IDRES : begin
write_protection disable) begin
oz 0D~ data 2
end
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Increased Reliability by reducing risk of errors as output is always aligned with specification

Improved cycle time

stage

Productivity gain

higher value added tasks
Standardization of the flow is based on IPXACT (IEEE P1685) standard, given by SPIRIT
Higher Reuse by using common inputs for RTL, verification, header and configuration generation

Results
Usage in more than 50 IPs

Demonstrated flow on many (~10) taped out chips
An example of 11000 lines of RTL code is generated in
2 minutes which could be reduced further

by reducing costly loops between firmware & hardware teams at a later

by having push button flow to reduce development costs and save time for
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read reg rea read wrice;

write_reg reg_road write - e
aint (bits:£)
wrice req req read write -
Fead res oo weadwrite, ARCTIC
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aint ibits:

Invalid address check
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Future Scope
Special behavi As IPXACT 1.5 supports special
registers, reduce use of additional configuration input.
Low Power: Think about concept of low power register
bank.



