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ABSTRACT 
Our work aims at introducing a methodology that adopts 
nowadays existing tool to develop models that can be reused 
repeatedly in the future. This methodology enables MATLAB 
Simulink to involve in the entire SoC design phase from high 
level abstract algorithm design all the way down to cycle-based 
comprehensive hardware implementation, to consider 
simultaneously both control plane and data plane design aspects. 
Models constructed in this way offer versatile solutions that suit a 
wide range of electronic system level (ESL) design requirements, 
they can be integrated in pure software virtual platform, 
VHDL/Verilog simulation environment, or hardware accelerated 
simulation solutions. An intellectual property (IP) design project 
is used as a case study, showing a significant improvement on 
design flow and IP quality. 
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1. INTRODUCTION 
As the design complexity increases, in order to secure the 
implementation feasibility and time-to-market, the design 
methodology has turned from transistor level, gate level, register 
transfer level (RTL), to (the well-known but un-unified) 
electronic system level (ESL). By definition, the ESL design 
methodology aims to offer a solution to designing from the 
system or application perspective. It tries to build up a design 
flow that can perform algorithm/architecture exploration, 
hardware/software co-simulation, and even verification in an 
efficient and effective way. However, resulting from the variety 
or diversity of the problem the system design may encounter, it is 
hardly to have one unified design flow that can meet those 
demands for all kinds of systems or applications. 

In spite of the uncertainty and crudity of the ESL design flow and 
tool sets current existing, all ESL technologies essentially share 
two fundamental objectives: facilitating design reuse and 
supporting design abstraction. From this point of view, we find 
that a model with the following two objectives is the crucial 
constituent towards ESL methodology. 

1.1 Scalability 
Among different design stages, an ESL model should be able to 
support abstracting the design, validation analysis, and 
implementation processes. Seamless migration between different 
abstract levels links up high level system simulation with detail 
function verification reliably. 

1.2 Reusability 
We usually acquire different tool sets to deal with different 
system or application issues. Therefore, ESL model needs to be 
integrated in C/C++ environments as well as in VHDL/Verilog 

environments. Easy transformation or wrapping of the model to fit 
to various tool sets or usage scenarios makes the model 
extensively applicable. 

In this article, we present a modeling methodology that can be 
used to create models satisfying both of those two objectives. 
These models can be system models, software models or 
hardware models. Models constructed in this way are easy to be 
implemented and integrated with. Designers with different 
domains, system or IP element, hardware or software, digital or 
analog, can manipulate this methodology to design and share their 
models effectively. 

2. SIMULINK-BASED MODEL DESIGN 
METHODOLOGY 
MATLAB's algorithm developing capability and Simulink's 
model-based design methodology are well recognized and 
adopted across industry and the academic world. The wide spread 
of this tool makes EDA vendors support Simulink model as if it 
were a standard. For software implementation, Real-Time 
Workshop provides a very effective link with many software 
development environments. As to FPGA solution, there are many 
possibilities to generate synthesizable code from Simulink models. 
For hardware implementation, Simulink HDL Coder is quiet 
adequate for generating synthesizable Verilog and VHDL code. 
Models constructed on such environment possess high reusability 
in nature. 

Furthermore, Simulink provides high flexibility in describing and 
simulating heterogeneous systems. The design methodology, such 
as state flow and graphical multi-domain simulation, makes the 
model easy to be implemented, discussed, and integrated. Those 
gripping features provide us with a fundamental environment for 
developing high-reusable and high-scalable ESL models. The 
outlook of our proposed Simulink model is as shown in Figure 1. 
Base on this shell, we propose the following design 
methodologies to guarantee high reusability and high scalability. 

2.1 Handshaking Mechanism 
Every module is activated according to the EventIn ports and the 
granularity of the events enables swift switch between 
transaction-level and cycle-level simulation. We maintain two 
signals, accept and complete, for each RequestIn Ack port and 
RequestOut Ack port. By utilizing these two signals, we can 
accomplish the functionality of performing outstanding and 
command buffering mechanism. 

2.2 Interface Design 
As design complexity continues to increase, the integration of the 
constituent components of the system is a non-neglectable task, 
having a significant impact on the quality of designs and on 
development schedules. Therefore, the target of the interface 
design is to make the modules be easily integrated, reorganized or 



replaced for architecture exploration. To this end, we define a 
universal interface for the RequestIn and RequestOut ports that 
comprise three channels, slave index or address, function index or 
data size, and message or data. 

2.3 Design Language 
State flow design methodology provides us with a nimble way 
toward abstraction. We can simply redirect a state transition and 
skip a comprehensive design by designing corresponding cost 
functions or timing tables. It also provides a good presentation of 
the design for both hardware and software components. Therefore, 
we use Simulink Stateflow as the fundamental of the modeling 
language. 

3. CASE STUDY: AN IP DESIGN PROJECT 
The proposed methodologies can be applied to system models, 
software components, digital hardware designs, and analog 
designs. Nevertheless, here we use a digital IP design project of 
NAND FLASH controller as a case study. In this project, our 
objective is to perform the architecture exploration of a FLASH 
controller which bridges a high-speed IO and a FLASH array. The 
whole system is considered to operate under Windows or Linux 
operating systems. 

We start with designing some basic and fundamental parts for 
hardware design constructions, such as buffer-controller, protocol 
handler, arbiter, and SRAM, to name a few. These components 
are throughout verified to meet real hardware design capabilities. 
Many benches and random tests are applied to ensure their 
functionality and robustness. Also, an AHB bus and FLASH 
memory models are modeled in this way. 

Then we bundle up the characteristics of operating system, file 
system, and high-speed IO link and design a component that 
models how application system utilizes this controller. Context 
switch duration, interrupt latency, sector size of the file system, 
and the bulk size of the high-speed IO are all parameterized and 
measured to cover a wide range of application scenarios. These 
components, hardware design or system behavior, are configured, 
assembled, and encapsulated into bigger constructs. A system 
model is then quickly constructed out of these primitive 
programmable components. 

Taking the advantage of our interface design, we quickly build up 
a simulation system that consists of an application workload, a 
DMA, an AHB bus, an arbiter, some channel managers, two 
shared SRAM FIFOs, and a FLASH farm, as depicted in Figure 2. 
The overall simulation speed is around 200 times faster than RTL 
simulation and thus we have the opportunity to investigate much 
more system configurations. 

This system allows for repeated analysis of the IP from various 
application perspectives. Since many design aspects are 
parameterized, we efficiently change many major system 
conditions and generate lots of performance reports for 
architecture exploration. We evaluate the IP performance under 
SATA and USB3.0 use scenarios. Operating systems with 
different context duration and interrupt latency are evaluated, too. 
After a quick but overall exploration, we examine the 
performance trends and check the conditions and performances 
that look peculiar to us. 

For example, through a throughout profiling, we observed that the 
performance for low operating frequencies is not as good as 
expected. As a result, we analyze the cycle behavior of the system, 
as shown in Figure 3, and quickly find the defect of the algorithm 
under such system condition. After modifying the arbitration 
policy and the behavior of smart buffer, we successfully preserve 
full bus utilization and gain 15% performance improvement 
against the original design. 

Besides, while developing the ECC engine of the NAND 
controller, it is not easy to model the distribution of FLASH 
errors using traditional design methodologies. Consequently, in 
order to catch up with the schedule, designers are coerced to make 
their decisions in the worst case only and this always leads to 
over-designs. However, by adopting this methodology, we 
quickly form a statistical model for FLASH errors and explore the 
performance under nominal cases. We shortly find the over design 
issue and modify the architecture to reduce the gate count to 57% 
of the original design. Moreover, since the design is originally 
derived under high operating frequencies, we also observe the 
performance shortage in low frequencies and then enhance and 
verify the corresponding architecture thereby. 

In addition to the FLASH controller design case, we utilize this 
methodology to develop DDR controller under customer’s 
proprietary virtual platform and improve system performance 
over 33%. We also successfully porting this DDR memory 
subsystem, within one day, to Virtutech Simics simulation 
environment and provide more precise memory access behavior 
for multi-core project. Putting this model into Carbon simulation 
environment through ARM CASI interface is also done rapidly. 
Meanwhile, we manipulate such methodology to perform 
pipelining and retiming design of ECC engine and seamlessly 
provide a cycle-by-cycle verification environment for RTL design. 
All demonstrate the broad scope of this proposed methodology. 

4. CONCLUSIONS 
Whereas cycle-based architecture design is usually viewed as a 
missing part of Simulink, in this article, we have shown that 
adopting Simulink environment to develop a high-reusable and 
high-scalable model is practical and beneficial. Instead of 
integrating various modeling languages and environments, we 
effectively use Simulink to get all necessary design aspects done. 
Models so created can be easily piled up, reorganized, and 
configured on Simulink environment for architecture exploration. 
Also, they are adequate to be the implementation basis and as a 
communication bridge between different technology domains. 
Their seamlessly abstracted versions can serve as the constituents 
for higher level development. At the same time, they can be 
converted to HDL to aid verification or become the hardware 
components for emulation systems. 

By distributing these models to various usage scenarios, we 
receive many design feedbacks and, accordingly, we can refine 
the abstract description of the design, the accuracy of the model, 
and the design implementation simultaneously. Eventually, we 
develop a set of multi-purpose models that can be used to explore 
the architecture, to assist the design of different technology 
domains, and accelerate the design and verification process. Thus, 
without waiting for the convergence of the ESL toolsets, the 
models and the corresponding designs help us to keep up with the 
ESL trends constantly. 
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Figure 1. The outlook of an ESL model with one input port and one output port. 

 

 
Figure 2. The FLASH system consists of different levels of ESL models. 

 



 

Figure 3. A snapshot of the cycle behavior of the FIFO of the FLASH controller. 


