
Integrating Software-debugger on
a SystemC-based Virtual-platform

Nizamudheen Ahmed [niz@ti.com]
Gulur Dwarakanath Nagendra [nagendra@ti.com]

Our Work
• We present an approach to integrate

software-debugger over a SystemC-
based Virtual platform

• We integrated the Texas Instrument’s
Code Composer Studio v4 debugger, over
a SystemC based Multi-core SoC Virtual
Platform (simulator)

– The SoC simulator simulated is TI’s next-
gen high-performance multi-core SoC,
targeted at LTE application

– This SoC contains multiple TI DSP’s, 10’s
of co-processor for LTE acceleration, DMA
engines and IO peripherals.

• Novelty:
– The Simulation Execution Controller

(SimEC) module is the key piece of our
work

– SimEC model design and implementation
overcomes a number of challenges in
integration a Software Debugger semantics
on simulation platform

Simulation Execution Controller
(SimEC)

Simulation Execution Controller
(SimEC)

DSP DSP DSP DSP

Mem-Sys

CoProc

CoProc

Inter Connect

ROM

DDR I/O I/O

SystemC
SoC

Challenges

• The following Debugger semantics are difficult to
implement over SystemC based Virtual Platform
– Asynchronous execution mode – Running software on f ew DSP

core’s while the other put halted
• Background: SystemC’s sc_start API shall advance t he simulation globally, and not

localized to one or few DSP cores .

– Handling breakpoints – Stop simulating all/few core s while one of
the running core stops because of an instruction br eakpoint

• Background: SystemC’s sc_start API will advance th e simulation for the specified
simulation time-unit. However, there is not mechani sm to pre-empt or pause the simulation,
before sc_start’s time-unit completes/expires.

– Maintaining higher simulation speed, while impleme nting debugger
features like run, halt, DSP instruction step, appl ication source-
step, breakpoints

• Background: These features may need simulation to be advanced in fine-grain granularity,
but at the cost of simulation speed

Introduction to SimEC and Debug API
• The debug API (API that the CCStudio v4 debugger cal ls, in response to a

user’s command from debugger) can be classified into 2 cat egories
– Visualization API – API used to view SoC registers/m emories (GET_MEM,

PUT_MEM, GET_REG, PUT_REG, SET_BP, CLR_BP..).
• These API do not change simulation state, when cal led

– Execution Control API – API used to control the simu lation execution (SIM_RUN,
SIM_STEP, SIM_HALT)

• These API change simulation state, when called

• The SimEC converts the Execution-Control debug API to necessary SystemC
API calls. The Visualization API is handled by the indivi dual IP models.

• The CCStudio v4 provides a debugger-window for each D SP core being
simulated.

– Each debugger commands (like run, halt…) may be is sued on individual DSP core,
or collectively on all, or Selected few cores

– CCStudio provides controls to execute one assembly instruction, orone C/C++
source code statement or run the simulation until i nterrupted (by a breakpoint or a
halt user-command)

User commands and Debug API
DescriptionDebug API call

Return the current state of simulation for the spec ified core. Returns the folllowing

�HALTED (indicating a breakpoint detection or or error in s imulation)

�RUNNING(indicating that the last SIM_RUN, SIM_STEP comple ted successfully).

stat_t SIM_STAT(core_id)

Execute a fixed quantity of simulation (need not be in units of instructions) on the given
core

void SIM_RUN(core_id)

Execute a single instruction on a given core void SIM_STEP(core_id)

SIM_RUN(core_x), SIM_RUN(core_y)

SIM_STAT(core_x): RUNNING [both core shall run]

SIM_STAT(core_y): RUNNING [both core shall run]

. . . .

SIM_STAT(core_x):HALTED [breakpoint]

SIM_STAT(core_y): RUNNING [core_y continues to run]

Simulation run on two (or more
cores) DSP Cores

SIM_RUN(core_id)

SIM_STAT(core_id): RUNNING, SIM_STAT(core_id): RUNNING

. . . .

SIM_STAT(core_id):: HALTED [because of a breakpoint]

Simulation-run on a DSP Core

SIM_STEP(core_id)

SIM_STAT(core_id): HALTED
Assembly single-step on a DSP core

Debug API call and expected responsesUser command (related to
Execution Control debug API)

Table: Summary of
all the debug API
the debugger calls
to SimEC

Table: Summary of
Debugger
commands and
corresponding
debug API used

• Few of the User commands that a user performs on t he CCStudio v4 is listed below
– Load a program into the DSP memory
– Apply breakpoints at function, say calc
– Run the target
– Inspect DSP/Shared memories, MMR and DSP registers whe n the target halts

Debug API and SimEC semantics
• The Code Composer Studio v4, the SimEC and all the IP models

simulated execute in a single OS process . In-process execution
• To keep the design simple, and to handle scenarios arising for

simulating multi-core SoC
– SimEC maintains a global run-list, that is null initially

• The run-list will contain a order-independent list of DSP-cores (IDs) that are
ready to run.

– SIM_RUN debug API call add its entry to the run-list. Simulation is not
executed in this API call!

– SIM_HALT debug API call removes its entry from the run-list
– SIM_STAT shall execute simulation on all the DSP core in the run -list and

return the stat_t of the requested DSP ID
– This design of executing the simulation in SIM_STAT as against in

SIM_RUNscales well in the multi-core SoC.

• Up Next: The key pieces in the SimEC module is the master clock-generator and the defined
clocking-scheme that are discussed in the following slides

Master Clock generator
• The Master clock-generator’s key features are

– Generate one or more clocks, based on configured f requency and duty-cycle
– Generated clocks are ‘gate-able’ [clock->stop(), clock->restart()]

• Class hierarchy

– The clock-generator generates ti_clock, which is b ackward-compatible with sc_clock.
– The posedge_in_cycle method can be used to schedule a clock-tick after ‘ n’ cycles (n ==

1 is available to posedge_event, in sc_in<bool>).
– The stop and restart methods are used to stop and resume the clock-ticks – Gated clock

implementation. This facilitates to stop-clocking o ne or more modules/Cores while other
continue to run.
• Ex: All the modules clocked using clk2 may be gated (clk2->stop()), while the modules that are

clocked using clk1 and clk4 can continue to run, as the Syst emC engine advances

sc_in<bool>

sc_clock

ti_clock_if

�stop
�restart
�num_ticks
�posedge_in_cycle
�negedge_in_cycle

ti_clock

Clock
Generator

clk1

clk2

clk4

clk1

Terminal clock
Derived clock

IP model w/o clock (sc_time’ed or untimed)

Legend

CPU0 CPU1 CPU2

MemSys0 MemSys3

Periph1 Periph2

PRCM/PSC

Periph6

SYSCLK1 SYSCLK3

S
Y

S
C

LK
2

S o C

s i m
 u l a

 t o
 r

(s
c_t op)

MemSys1

Interconnect

Periph0

Master Clock

÷÷ ÷

÷ ÷

• A given model in the simulation may
contain one or mode clocks.

• These clocks can be categorized as
– Terminal clock

• Clocks that are generated outside
SoC simulator Topology (by Clock-
generator)

• Terminal clocks are configured at
init-time and shall not change
thereon.

– Derived clock
• Clocks that are generated within

SoC that may be derived from one
or more terminal clocks

• A terminal clock may be designated
as

– Free-running clock – Clocks that
are never stop ’ed

– Debugger Execution Control
Linked Clock (DECL). – Clocks
whose stop/restart are
controlled by debugger commands
(run, halt, step)

1

2

1

1

1

2

1

2

1

8

Clocking scheme

Designated
Free-running Clock

Designated
DECL-Clock
Designated
DECL-Clock
Designated
DECL-Clock

SimEC Implementation(1)
• This slide and the next gives the implementation d etails of SimEC on converting debug

API calls to SystemC calls.

• At Initialization
– After constructing the sc_top , the SimEC collates all the DECL clocks in the simulation and

associates each with a debugger
• The SimEC is provided with a meta-data file (.cfg) to help make the set {Debugger ID, DSP id,

{set of DECL clocks}}
– Debugger ID to DSP ID holds a 1-1 mapping
– DSP ID to DECL clock holds a 1-many mapping
– Note: A DECL Clock should not be associated with more than one DSP ID

– The SimEC setups up each DSP Cores with few callba ck functions that are used to notify (to
SimEC) the following

• End of an instruction step
• Instruction Breakpoint detection
• Error in simulation
• General halt

• At Run time
– The SimEC determines (once) the execution quantum – amount of SystemC simulation time

to be advanced in call of SIM_STAT

SimEC Implementation(2)
– The SimEC state-transition diagram is depicted below. This state-

transition diagram consolidates the mapping of debug AP I (transitions) to
various activities carried-out in the SystemC domain

IDLE

SIM_STEP

SIM_STAT

SIM_STAT

SIM_RUN

SIM_HALT

end_of_Q

cb_on_bp,
cb_on_err,

cb_on_gen_halt

cb_on_eois

Ready to
Run

Ready to
Step

Stepping

Running

In this state, the sc_start is
called with the pre-determined
execution quantum

Running, Stepping

Ready to Step

In this state, the corresponding
DECL clocks are restart ’ed.
The simulation is ready to go

Ready to Run

Initialization state. In this state,
all DECL clocks are stop ’ed.

IDLE

DescriptionState

callback from the DSP core indicating detection of a breakpoint,
error, general-halt and end-of-an-instruction respectively. This
calls for a pre-mature termination of sc_start call

cb_on_bp, cb_on_err,
cb_on_gen_halt, cb_on_eios

sc_start of a fixed quantum has completed end_of_q

Debug API, from debuggerSIM_RUN, SIM_STEP, SIM_HALT,
SIM_STAT

DescriptionTransitions

About Execution Quantum
• The execution-quantum needs to be carefully choose

– Too less a execution quantum may lead to frequent call of SIM_RUN-SIM_STAT-sc_start
sequence that may lead to simulation overhead

– Too high a execution quantum may lead to less-freq uent call of the sequence, however, the
user’s feel of the debugger interactivity may worsen.

– Care should be taken to (manually) choose a quantu m that takes care of the concerns listed
above.

• Handling Breakpoints/error
– User is allowed to place breakpoints on the target -code running on the DSP simulator model.

The DSP model should stop simulation and report it to user on detecting a instruction breakpoint
– Since SystemC does not allow pre-mature terminatio n of sc_start, DSP core’s corresponding

clocks are stop ’ed when the DSP cores makes a call-back to pause si mulation, prematurely
(When it detects an instruction breakpoint).

• This ensures the DSP is clock-gated until the user take s appropriate action when these condition occurs.

– However, other modules that are either ‘free-runni ng’ clock’ed or not clock-gated continue to run
until the sc_start expires.

Simulation time

Execution
Quantum

sc_start(q)
natural termination

of sc_start

pre-matured termination
of sc_start

Because of a instruction breakpoint.
Its clock is stop ’ed

Results

• We were able to simulate multi-core TI DSP on Code C omposer Studio v4
with LTE Layer 1, 2 and 3 coprocessors

• All the debugger semantics/commands are support with no limitation on the
expected behaviors

• We were able to simulate the entire SoC simulation a t 250 KIPS on a LTE
application that runs on all the DSP cores and few copro cessors.

– The SoC simulator we simulated models fair-level o f timing and models all the
architecture pipeline in details.

• SimEC is implemented as a individual component that is SoC-independent
and can integrate any SoC/Processor.

• We are in process of reusing the SimEC in a different TI SoC that contains few
TI DSPs and ARM cores.%

