
Re-timing Trade-off in High Performance Graphics Designs

Murali Seshadri, Sharon Martin, Ragadeepika Kshatri, Raj Varada
Intel Corporation, Santa Clara, CA

Sequential State definition is a complex problem

Two common methods

– State Matching

CLK 500ps1ns

REG
y

REG
x

REG
z

Move gates across
stage boundary

RTL definition almost
meets cycle time

500ps 500ps 500ps 500ps 500ps

CLK 500ps

Implementation meets cycle time

500ps 450ps 600ps 550ps 400ps

CLK 500ps50ps 100ps50ps

RTL definition oblivious
of cycle time

Balance registers
across logic cloud

2.5 ns

CLK 500ps

500ps 500ps 500ps 500ps 500ps

CLK 500ps

Implementation meets cycle time

What is Register Retiming

CLK 500ps

REG
y

REG
z

REG
x

500 ps 500 ps

Register Retiming – Case I Register Retiming – Case II

Retiming is integrated into logic synthesis flow

– Flattening of design happens after retiming

Synthesis FlowFlow

Read RTL

Read SDC

<Optional> Flatten design modules

(retain hard macros)

RTL to Gates

Incremental Synthesis

Read RTL

Read SDC

RTL to Gates

Register Retiming

<Optional> Flatten design modules

(retain hard macros)

Incremental Synthesis

Synthesis Retiming Flow

Logic Synthesis Flow

Retime Module 1 first:
Module 1 receives

incorrect
I/O delays from

Module 2

Retime Module 2 first:
Module 1 receives

correct
I/O delays from

Module 2

Logic flow between
retiming modules

Logic
Flow Module 2Module 1

Logic

FlowModule 1 Module 2

Logic
FlowModule 1 Module 2

Order Dependency in Retiming Flow

Logic with no direct connectivity in retimed sub-hierarchies
can use single pass retiming flow

– No order dependency

Order dependency in logic requires iterative retiming flow

Block with Order Dependency

Logic
Flow

Retime Module 3

Retime Module 2

Retime Module 1

Retime Modules Together
(single pass flow)

Iterative Retime Flow

Module 2Module 1

Logic
Flow

Module 3

Single Pass vs. Iterative Retiming

Flat Design Flow

Formal Verification

RTL

RTL to NETLIST

Pre-Retimed

Flat Netlist

Retimed

Flat Netlist

NETLIST to NETLIST

Flatten the design

Logic synthesis

(Gate mapping & Opt)

Retiming on entire

flat design

Design is flat

Rest of Logic Synthesis

Flow Steps

Flatten the design

Flow Steps

READ RTL

Logic Synthesis

Hierarchical Design Flow

RTL

RTL to NETLIST

Pre-Retimed

Hier Netlist

Retimed

Hier Netlist

NETLIST to NETLIST

Logic synthesis

(Gate mapping & Opt)

Retiming only on

hierarchy modules

Maintain Hierarchy
on retimed modules

Design is left with retimed

hierarchy modules

Rest of Logic Synthesis

Flow Steps

READ RTL

Formal VerificationLogic Synthesis

Hybrid Design Flow

RTL

RTL to NETLIST

Pre-Retimed
Hier Netlist

Retimed

Hier Netlist

NETLIST to NETLIST

Retimed

Flat Netlist

NETLIST to NETLIST

Logic synthesis

(Gate mapping & Opt)

Retiming only on

hierarchy modules

Maintain Hierarchy

on retimed modules

Flatten the Design

Rest of Logic Synthesis

Flow Steps

READ RTL

Formal VerificationLogic Synthesis

Retiming is done on entire flat design
Register names and boundaries change in entire design
+ Standard simple flow
- Not optimal for area, power, timing
- Formal verification is difficult with lot of mismatches
~ Needs 2-stage FV flow

Modules which need retiming are left as hierarchies
Register names change only within retimed modules
+ Good for area, timing and power
+ Formal verification is clean
- Optimization & Verification flows are more complex
~ Needs 2-stage FV flow

Modules which need retiming are left as hierarchies
Design is flattened after retiming
Register names change only within retimed modules
Better area, power and timing optimization
Standard physical verification flows
Needs 3-stage FV stage

Hierarchical & Hybrid Flows show equal results
Hybrid Flow chosen due to simplicity of
Verification flows

Hierarchical & Hybrid Flows show equal results
Hybrid Flow chosen due to simplicity of

Verification flows

Hybrid Flows show significantly better results

Hybrid Flows show significantly better results

Hierarchical & Hybrid Flows show equal results

Hybrid Flow chosen due to simplicity of
Verification flows

CommentsBlock# Flow
Ratio of
Logic
Area

Ratio
of Int
WNS

Ratio
of Int

#paths

Ratio
of

Total Z

Ratio
of Max

Lkg

Block1

Flat 1.18 1.14 1.17

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.01 1.04 1.04

Block2

Flat 1.45 0.27 2.46 1.66 1.76

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 0.92 0.20 0.19 0.88 0.89

Block3

Flat 1.05 2.63 1.39 1.07 0.84

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.02 0.79 0.42 0.97 0.75

Block4

Flat 0.98 1.00 1.00

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.00 1.00 1.01

Block6

Flat 1.02 1.04 1.05

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.00 1.00 1.00

Hierarchical & Hybrid Flows show equal results
Hybrid Flow chosen due to simplicity of
Verification flows

Hierarchical & Hybrid Flows show equal results
Hybrid Flow chosen due to simplicity of

Verification flows

Hybrid Flows show significantly better results

Hybrid Flows show significantly better results

Hierarchical & Hybrid Flows show equal results

Hybrid Flow chosen due to simplicity of
Verification flows

CommentsBlock# Flow
Ratio of
Logic
Area

Ratio
of Int
WNS

Ratio
of Int

#paths

Ratio
of

Total Z

Ratio
of Max

Lkg

Block1

Flat 1.18 1.14 1.17

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.01 1.04 1.04

Block2

Flat 1.45 0.27 2.46 1.66 1.76

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 0.92 0.20 0.19 0.88 0.89

Block3

Flat 1.05 2.63 1.39 1.07 0.84

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.02 0.79 0.42 0.97 0.75

Block4

Flat 0.98 1.00 1.00

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.00 1.00 1.01

Block6

Flat 1.02 1.04 1.05

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.00 1.00 1.00

• Retiming is used as a technique to decouple RTL and
PD for sequential state location

• Presented an efficient hybrid retiming flow

• Preserves logic hierarchy for retiming
• Flattening after retiming for best QOR

• Supports easy to use FV methodology

Results – Relative Performance Retiming – Design Flow Comparison Conclusions

– Register Retiming

Best Average Worst

Flow
Complexity

Area
Optimization

Power
Optimization

Physical
Design

Verification

Timing
Optimization

FV
Complexity

Flat

Hierarchical

Hybrid

