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Sequential State definition is a complex problem

Two common methods

– State Matching
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What is Register Retiming
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Retiming is integrated into logic synthesis flow

– Flattening of design happens after retiming
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Order Dependency in Retiming Flow

Logic with no direct connectivity in retimed sub-hierarchies 
can use single pass retiming flow

– No order dependency

Order dependency in logic requires iterative retiming flow
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Hierarchical Design Flow
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Retiming is done on entire flat design
Register names and boundaries change in entire design
+ Standard simple flow
- Not optimal for area, power, timing 
- Formal verification is difficult with lot of mismatches
~ Needs 2-stage FV flow

Modules which need retiming are left as hierarchies
Register names change only within retimed modules
+ Good for area, timing and power 
+ Formal verification is clean
- Optimization & Verification flows are more complex
~ Needs 2-stage FV flow

Modules which need retiming are left as hierarchies
Design is flattened after retiming
Register names change only within retimed modules
Better area, power and timing optimization
Standard physical verification flows
Needs 3-stage FV stage
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Block1

Flat 1.18 1.14 1.17

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.01 1.04 1.04

Block2

Flat 1.45 0.27 2.46 1.66 1.76

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 0.92 0.20 0.19 0.88 0.89

Block3

Flat 1.05 2.63 1.39 1.07 0.84

Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.02 0.79 0.42 0.97 0.75
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Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.00 1.00 1.01
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Hierarchy 1.00 1.00 1.00 1.00 1.00

Hybrid 1.00 1.00 1.00
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• Retiming is used as a technique to decouple RTL and 
PD for sequential state location

• Presented an efficient hybrid retiming flow 

• Preserves logic hierarchy for retiming
• Flattening after retiming for best QOR

• Supports easy to use FV methodology

Results – Relative Performance Retiming – Design Flow Comparison Conclusions

– Register Retiming
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