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The Need for Netlist Reduction

• The ITRS roadmap shows exponential increase in number of 
transistors over process nodes; almost doubling every 2 years

• Interconnects and parasitics are increasing exponentially as well as 
adding to the size and complexity of post-layout netlists

• In 40nm and below, a post-layout extraction of a chip can include 
hundreds of millions to a few billions of elements
      

• Large megacell/memory blocks can take many hours to extract and 
many more hours to simulate 

Quick turnaround time for simulation is urgently needed during 
design cycle! 

Post-layout flat netlist size for small memories can be ~2-3 GB
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What is Needed?

• A tool that can work on pre-layout netlists as well as post-layout 
designs

• A tool that can cut out any user-specified group of subcircuits 
• A lightweight tool, runs in few minutes with a small memory 

footprint
• Quick turnaround time for enhancements and fixes
• Seamless integration into our in-house CAD tools
• Leverage our in-house CAD tool development capabilities
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Gladius Flow Top-Level Overview
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Gladius Flow – Path Tracer
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Path Tracer

• Generates a list of all the nets and instances to be preserved 
based on user directives

• To do this Path Tracer utilizes two types of arcs:
‒ Cell Arcs: describe all possible traversal arcs through a 

subcircuit or a cell
‒ Net Arcs: arcs between two nets in a design determined 

through Cell Arcs
• The list of instances is sent to the Core Extractor 
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Path Tracer Example – Inverter Tree (1)

in

out1

out2

out3

out4

net1

net3

net2

Net Arcs:
in → net1
net1 → net2
net1 → net3
net2 → out1
net2 → out2
net2 → out3
net2 → out4

All paths from net “in”:
in → net1 → net2 → out1
in → net1 → net2 → out2
in → net1 → net3 → out3
in → net1 → net3 → out4

outin

Cell Arcs:
in → out

Basic Approach:
1. Determine “cell_arcs” for all stopcells
2. Determine “net_arcs” for entire design
3. Construct paths, based on “net_arc” info

Net arcs are between 
the nets of the design

Cell arcs are between 
the pins of a stopcell
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Path Tracer Example – Inverter Tree (2)

in

out1

out2

out3

out4

net1

net3

net2

Path Traversal:
Initialization:

PATH1=”in”

Iteration#1:
PATH1=”in:net1”

Iteration#2:
PATH1=”in:net1:net2”
PATH2=”in:net1:net3”

Iteration3:
PATH1=”in:net1:net2:out1”
PATH2=”in:net1:net2:out2”
PATH3=”in:net1:net3:out3”
PATH4=”in:net1:net3:out4”

User Directive:
START net: in, END net: out4

Path4 is the path to be traced
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Gladius Flow – Core Extractor
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Core Extractor

Identify instances 
to be preserved

Tie-off load transistors
based on user input

Create ports for the
reduced netlist

Input Netlists List of Instances from 
Path Tracer

Reduced Netlist
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Core Extractor Example

In0
Out0

Out1

X0 X1

X2

X3 X4
R0 R1 R3

R2

• Input netlist 
consists of 5 
inverters X0-X4

• Required: 
Extract subckts 
X0, X1, X3 with 
load transistors 
preserved
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Core Extractor Example – Simple Loading 

In0
Out0

Out1

X0 X1

X2

X3 X4
R0 R1 R3

R2

• Required 
instances/cells 
are kept

• Needed 
input/output 
pins are created 
(out_X3)

• Side loads are 
tied-off

In0
Out_X3

X0 X1 X3
R0 R1 R3

R2 Equivalent load 
for inv. X2

Equivalent load 
for inv. X4
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Core Extractor Example - Accurate Loading

In0
Out0

Out1

X0 X1

X2

X3 X4
R0 R1 R3

R2

• Assume only X0 
and X1 are to 
be kept

• A more 
accurate side 
load tie-off is 
done to account 
for gate 
coupling

• Larger netlist 
size

In0 Out_X2X0 X1

X3

R0 R1

R3

R2

Equivalent load 
for inv. X4

Load Inverters

X2
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Gladius Flow – Wire Insertion

Path Tracer

Post-layout
Design

Wire Insertion

Core Extractor

Reduced Netlist

To Simulation

Post-layout
designs

Pre-layout
designs

Pre-layout
Design

Create Schematics

User 
Directives

Gladius

Side Inputs 
Sensitization

Reduced Netlist Schematics



1647th DAC - User Track (Jun. 13-18, 2010)

Wire Insertion

• Adds RC-megawires the reduced netlists in the pre-layout input 
netlists

• Using user directives, inserts RC-megawires on a given net
• An Example of a directives file to insert a ladder-type wire for 

net “A”:
NET            A                  
#NO_OF_DRVR 1                   
#NO_OF_RCVR 3                   
WIRE_MODEL daisychain          
WIRES      W1,W2,W3
DEFINE_WIRE W1 M1,l=10u,w=0.5u,sl=0.7u,sr=0.7u
DEFINE_WIRE W2 M3,l=10u,w=0.5u,sl=0.7u,sr=0.7u,ml=1,mr=1.5,cest=1
DEFINE_WIRE W3 M2,l=10u,w=0.5u,sl=0.7u,sr=0.7u,ml=1,mr=1.5,cest=1
DRIVER                    X0              
RECEIVER X8,X5,X3
END_NET       A                 
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Wire Insertion – Configuration Examples (1)

a

a

a_main_1

a_main_1

a_main_2

WIRE_MODEL p2p
WIRES W1
RECEIVER x1

WIRE_MODEL p2p
WIRES W1,W2
RECEIVER x1,x2

x1

x1

x2W2

W1

W1

• Can be as simple as a point-to-point (p2p) wire insertion:

p2p with single 
receiver

p2p with multiple 
receiver
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Wire Insertion – Configuration Examples (2)

• Or can be as as complicated as the design requires:

a_main_2

a

a_main_1 a_main_3

x0<0>

x0<1> x0<2>

W1 W2 W2

WIRE_MODEL daisychain
WIRES W1(W4+W5),W2(W5),W2+W3(W6)
RECEIVER x0<0:2>

W4 W5 W6

W5

a_main_4

W3
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Gladius Flow – Side Inputs Sensitization
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Side Input Sensitization

• Automatically sensitize 
side inputs to allow logic 
propagation

• Sensitizations are based 
on characterization data 
from libraries

• For custom cells, user 
directives are used to 
create sensitizations 

Reduced Netlist

Sensitized Reduced Netlist

Original Netlist

Path of interest
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Gladius Flow – Create Schematics
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Create Schematics

• Generates a verilog netlist corresponding to the reduced design
‒ The Cells in this verilog correspond to the stopcells of the Path 

Tracer
• A submodule (ihdl) converts verilog to schematic

‒ ihdl must be able to find the cells in the verilog in the current 
design library path
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Results and Correlation (1)

• In this paper we used 3 SPARC design blocks in 40nm to compare 
the reduced netlist generated by our tool vs. full block netlist

• Simulations for timing margins were done and individual delay 
measures were used as a metric for accuracy correlation

Design
Full Netlist Reduced Netlist

Simulation
Runtime

Netlist
Size

# of
Transistors

Simulation
Runtime

Netlist
Size

# of
Transistors

B1 8hr 59MB 20K 18min 11MB 5K

B2 4hr 1.05GB 300K 1hr 174MB 53K

B3 41min 137MB 44.5K 18min 41MB 13K
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Design
Full Netlist Reduced Netlist

Simulation
Runtime

Netlist
Size

# of
Transistors

Simulation
Runtime

Netlist
Size

# of
Transistors

B1 8hr 59MB 20K 18min 11MB 5K

B2 4hr 1.05GB 300K 1hr 174MB 53K

B3 41min 137MB 44.5K 18min 41MB 13K

Results and Correlation (2)

70% - 83%  Netlist size reduction and 55% - 96% simulation runtime reduction

• In this paper we used 3 SPARC design blocks in 40nm to compare 
the reduced netlist generated by our tool vs. full block netlist

• Simulations for timing margins were done and individual delay 
measures were used as a metric for accuracy correlation
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Results and Correlation (3)

• Accuracy correlation shows that the tool's output netlist 
simulation results are always within 1.5% of full netlist

Block 1 Blocks 2&3
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Summary

• We developed a tool that allows a designer to selectively cut 
portions of a design to construct a reduced netlist to be used in 
different analysis types

• Different modules within the tool are built using proprietary 
algorithms

• Our tool is not limited to generating netlists for timing paths only; 
it can cut and generate any subset of the design based on user 
directives 

• Simulations on the reduced netlists produced by the tool are 
within 1.5% from full netlist simulations with large runtime 
savings
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