
<Insert Picture Here>
Gladius: An Accurate Method for Fast Path

Extraction in Microprocessor Design

Sujeeth Udipi, Sukhdeep Sidhu, Pravin Chandran,
and Walid Elgharbawy (walid.elgharbawy@sun.com)
Oracle America, Inc.

mailto:walid.elgharbawy@sun.com

247th DAC - User Track (Jun. 13-18, 2010)

Outline

• The Need for Netlist Reduction
• What is Needed?
• Gladius Flow Top-Level Overview
• Gladius Modules:

‒ Path Tracer
‒ Core Extractor
‒ Wire Insertion
‒ Side Input Sensitization
‒ Create Schematics

• Results and Correlation
• Summary and discussion

347th DAC - User Track (Jun. 13-18, 2010)

The Need for Netlist Reduction

• The ITRS roadmap shows exponential increase in number of
transistors over process nodes; almost doubling every 2 years

• Interconnects and parasitics are increasing exponentially as well as
adding to the size and complexity of post-layout netlists

• In 40nm and below, a post-layout extraction of a chip can include
hundreds of millions to a few billions of elements

• Large megacell/memory blocks can take many hours to extract and
many more hours to simulate

Quick turnaround time for simulation is urgently needed during
design cycle!

Post-layout flat netlist size for small memories can be ~2-3 GB

447th DAC - User Track (Jun. 13-18, 2010)

What is Needed?

• A tool that can work on pre-layout netlists as well as post-layout
designs

• A tool that can cut out any user-specified group of subcircuits
• A lightweight tool, runs in few minutes with a small memory

footprint
• Quick turnaround time for enhancements and fixes
• Seamless integration into our in-house CAD tools
• Leverage our in-house CAD tool development capabilities

547th DAC - User Track (Jun. 13-18, 2010)

Gladius Flow Top-Level Overview

Path Tracer

Post-layout
Design

Wire Insertion

Core Extractor

Reduced Netlist

To Simulation

Post-layout
designs

Pre-layout
designs

Pre-layout
Design

Create Schematics

User
Directives

Gladius

Side Inputs
Sensitization

Reduced Netlist Schematics

647th DAC - User Track (Jun. 13-18, 2010)

Gladius Flow – Path Tracer

Path Tracer

Post-layout
Design

Wire Insertion

Core Extractor

Reduced Netlist

To Simulation

Post-layout
designs

Pre-layout
designs

Pre-layout
Design

Create Schematics

User
Directives

Gladius

Side Inputs
Sensitization

Reduced Netlist Schematics

747th DAC - User Track (Jun. 13-18, 2010)

Path Tracer

• Generates a list of all the nets and instances to be preserved
based on user directives

• To do this Path Tracer utilizes two types of arcs:
‒ Cell Arcs: describe all possible traversal arcs through a

subcircuit or a cell
‒ Net Arcs: arcs between two nets in a design determined

through Cell Arcs
• The list of instances is sent to the Core Extractor

847th DAC - User Track (Jun. 13-18, 2010)

Path Tracer Example – Inverter Tree (1)

in

out1

out2

out3

out4

net1

net3

net2

Net Arcs:
in → net1
net1 → net2
net1 → net3
net2 → out1
net2 → out2
net2 → out3
net2 → out4

All paths from net “in”:
in → net1 → net2 → out1
in → net1 → net2 → out2
in → net1 → net3 → out3
in → net1 → net3 → out4

outin

Cell Arcs:
in → out

Basic Approach:
1. Determine “cell_arcs” for all stopcells
2. Determine “net_arcs” for entire design
3. Construct paths, based on “net_arc” info

Net arcs are between
the nets of the design

Cell arcs are between
the pins of a stopcell

947th DAC - User Track (Jun. 13-18, 2010)

Path Tracer Example – Inverter Tree (2)

in

out1

out2

out3

out4

net1

net3

net2

Path Traversal:
Initialization:

PATH1=”in”

Iteration#1:
PATH1=”in:net1”

Iteration#2:
PATH1=”in:net1:net2”
PATH2=”in:net1:net3”

Iteration3:
PATH1=”in:net1:net2:out1”
PATH2=”in:net1:net2:out2”
PATH3=”in:net1:net3:out3”
PATH4=”in:net1:net3:out4”

User Directive:
START net: in, END net: out4

Path4 is the path to be traced

1047th DAC - User Track (Jun. 13-18, 2010)

Gladius Flow – Core Extractor

Path Tracer

Post-layout
Design

Wire Insertion

Core Extractor

Reduced Netlist

To Simulation

Post-layout
designs

Pre-layout
designs

Pre-layout
Design

Create Schematics

User
Directives

Gladius

Side Inputs
Sensitization

Reduced Netlist Schematics

1147th DAC - User Track (Jun. 13-18, 2010)

Core Extractor

Identify instances
to be preserved

Tie-off load transistors
based on user input

Create ports for the
reduced netlist

Input Netlists List of Instances from
Path Tracer

Reduced Netlist

1247th DAC - User Track (Jun. 13-18, 2010)

Core Extractor Example

In0
Out0

Out1

X0 X1

X2

X3 X4
R0 R1 R3

R2

• Input netlist
consists of 5
inverters X0-X4

• Required:
Extract subckts
X0, X1, X3 with
load transistors
preserved

1347th DAC - User Track (Jun. 13-18, 2010)

Core Extractor Example – Simple Loading

In0
Out0

Out1

X0 X1

X2

X3 X4
R0 R1 R3

R2

• Required
instances/cells
are kept

• Needed
input/output
pins are created
(out_X3)

• Side loads are
tied-off

In0
Out_X3

X0 X1 X3
R0 R1 R3

R2 Equivalent load
for inv. X2

Equivalent load
for inv. X4

1447th DAC - User Track (Jun. 13-18, 2010)

Core Extractor Example - Accurate Loading

In0
Out0

Out1

X0 X1

X2

X3 X4
R0 R1 R3

R2

• Assume only X0
and X1 are to
be kept

• A more
accurate side
load tie-off is
done to account
for gate
coupling

• Larger netlist
size

In0 Out_X2X0 X1

X3

R0 R1

R3

R2

Equivalent load
for inv. X4

Load Inverters

X2

1547th DAC - User Track (Jun. 13-18, 2010)

Gladius Flow – Wire Insertion

Path Tracer

Post-layout
Design

Wire Insertion

Core Extractor

Reduced Netlist

To Simulation

Post-layout
designs

Pre-layout
designs

Pre-layout
Design

Create Schematics

User
Directives

Gladius

Side Inputs
Sensitization

Reduced Netlist Schematics

1647th DAC - User Track (Jun. 13-18, 2010)

Wire Insertion

• Adds RC-megawires the reduced netlists in the pre-layout input
netlists

• Using user directives, inserts RC-megawires on a given net
• An Example of a directives file to insert a ladder-type wire for

net “A”:
NET A
#NO_OF_DRVR 1
#NO_OF_RCVR 3
WIRE_MODEL daisychain
WIRES W1,W2,W3
DEFINE_WIRE W1 M1,l=10u,w=0.5u,sl=0.7u,sr=0.7u
DEFINE_WIRE W2 M3,l=10u,w=0.5u,sl=0.7u,sr=0.7u,ml=1,mr=1.5,cest=1
DEFINE_WIRE W3 M2,l=10u,w=0.5u,sl=0.7u,sr=0.7u,ml=1,mr=1.5,cest=1
DRIVER X0
RECEIVER X8,X5,X3
END_NET A

1747th DAC - User Track (Jun. 13-18, 2010)

Wire Insertion – Configuration Examples (1)

a

a

a_main_1

a_main_1

a_main_2

WIRE_MODEL p2p
WIRES W1
RECEIVER x1

WIRE_MODEL p2p
WIRES W1,W2
RECEIVER x1,x2

x1

x1

x2W2

W1

W1

• Can be as simple as a point-to-point (p2p) wire insertion:

p2p with single
receiver

p2p with multiple
receiver

1847th DAC - User Track (Jun. 13-18, 2010)

Wire Insertion – Configuration Examples (2)

• Or can be as as complicated as the design requires:

a_main_2

a

a_main_1 a_main_3

x0<0>

x0<1> x0<2>

W1 W2 W2

WIRE_MODEL daisychain
WIRES W1(W4+W5),W2(W5),W2+W3(W6)
RECEIVER x0<0:2>

W4 W5 W6

W5

a_main_4

W3

1947th DAC - User Track (Jun. 13-18, 2010)

Gladius Flow – Side Inputs Sensitization

Path Tracer

Post-layout
Design

Wire Insertion

Core Extractor

Reduced Netlist

To Simulation

Post-layout
designs

Pre-layout
designs

Pre-layout
Design

Create Schematics

User
Directives

Gladius

Side Inputs
Sensitization

Reduced Netlist Schematics

2047th DAC - User Track (Jun. 13-18, 2010)

Side Input Sensitization

• Automatically sensitize
side inputs to allow logic
propagation

• Sensitizations are based
on characterization data
from libraries

• For custom cells, user
directives are used to
create sensitizations

Reduced Netlist

Sensitized Reduced Netlist

Original Netlist

Path of interest

2147th DAC - User Track (Jun. 13-18, 2010)

Gladius Flow – Create Schematics

Path Tracer

Post-layout
Design

Wire Insertion

Core Extractor

Reduced Netlist

To Simulation

Post-layout
designs

Pre-layout
designs

Pre-layout
Design

Create Schematics

User
Directives

Gladius

Side Inputs
Sensitization

Reduced Netlist Schematics

2247th DAC - User Track (Jun. 13-18, 2010)

Create Schematics

• Generates a verilog netlist corresponding to the reduced design
‒ The Cells in this verilog correspond to the stopcells of the Path

Tracer
• A submodule (ihdl) converts verilog to schematic

‒ ihdl must be able to find the cells in the verilog in the current
design library path

2347th DAC - User Track (Jun. 13-18, 2010)

Results and Correlation (1)

• In this paper we used 3 SPARC design blocks in 40nm to compare
the reduced netlist generated by our tool vs. full block netlist

• Simulations for timing margins were done and individual delay
measures were used as a metric for accuracy correlation

Design
Full Netlist Reduced Netlist

Simulation
Runtime

Netlist
Size

of
Transistors

Simulation
Runtime

Netlist
Size

of
Transistors

B1 8hr 59MB 20K 18min 11MB 5K

B2 4hr 1.05GB 300K 1hr 174MB 53K

B3 41min 137MB 44.5K 18min 41MB 13K

2447th DAC - User Track (Jun. 13-18, 2010)

Design
Full Netlist Reduced Netlist

Simulation
Runtime

Netlist
Size

of
Transistors

Simulation
Runtime

Netlist
Size

of
Transistors

B1 8hr 59MB 20K 18min 11MB 5K

B2 4hr 1.05GB 300K 1hr 174MB 53K

B3 41min 137MB 44.5K 18min 41MB 13K

Results and Correlation (2)

70% - 83% Netlist size reduction and 55% - 96% simulation runtime reduction

• In this paper we used 3 SPARC design blocks in 40nm to compare
the reduced netlist generated by our tool vs. full block netlist

• Simulations for timing margins were done and individual delay
measures were used as a metric for accuracy correlation

2547th DAC - User Track (Jun. 13-18, 2010)

Results and Correlation (3)

• Accuracy correlation shows that the tool's output netlist
simulation results are always within 1.5% of full netlist

Block 1 Blocks 2&3

2647th DAC - User Track (Jun. 13-18, 2010)

Summary

• We developed a tool that allows a designer to selectively cut
portions of a design to construct a reduced netlist to be used in
different analysis types

• Different modules within the tool are built using proprietary
algorithms

• Our tool is not limited to generating netlists for timing paths only;
it can cut and generate any subset of the design based on user
directives

• Simulations on the reduced netlists produced by the tool are
within 1.5% from full netlist simulations with large runtime
savings

2747th DAC - User Track (Jun. 13-18, 2010)

Acknowledgments

• Pranjal Srivastava
• Shriram Gundala
• Sateesh Medepalli
• Rushang Mehta
• Beena Rangaswamy
• Hemanga Das
• Mohammed Jamil
• Our tool users

<Insert Picture Here>

Q & A

	Oracle – Sun Integration Plan
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

