Using a Formal Property Checker for Simulation Coverage Closure

Tim.Blackmore@infineon.com
David.Halliwell @infineon.com
Phil.Barker@infineon.com

infineon
Overview

e Motivation - Difficulties with achieving Coverage Closure during
simulation-based testing
e Describe how a Formal Property Checker can be used to aid
Coverage Closure
o Based on Temporal Induction
o Give example properties

Coverage Holes

¢ Code Coverage indicates how thoroughly the testbench has
exercised the source code

e Analyzing Coverage holes determines whether more tests are
needed. or if that code is unreachable

(343 if (A && B))

@3 if (MODE == 2) \

344 512 X=X+2; 344 begin
345 else if (C) 345 if (A && B)
346 R () X=X+3; 346 512 X=X+2;
347 else 347 else if (C)
348 417 X=X+4; 348 *¥*¥Q** X=X+3;

349 else
Figurel: RTL code with coverage 350 417 X=X+4;
hole. Holes are usually identified by end

_ /

Figure2: After bug fix, line numbers have changed.
The hole needs to be re-analysed.

line number.

Coverage Closure

e Coverage analysis is left until the code stability point
e Bugs found during Coverage closure potentially result in schedule
slips

% University of
BRISTOL

Kerstin.Eder@bristol.ac.uk
Naresh.Ramaram@infineon.com

Property Generation

343 if (A && B) ﬂzla if (MODE == 2) \
344 512 X=X+2; 344 begin
345 else if (C) 345 if (A && B)
346 R (e X=X+3; 346 512 X=X+2;
347 else 347 else if (C)
348 417 X=X+4; 348 *¥*Q** X=X+3;
349 else
branch_unreachable 346 reset; 320 4 end SR

branch_unreachable_346_step_t;

macro branch_346

> Y

branch_unreachable_348 reset;
branch_unreachable_348 step_t;

I(A&& B) && C;

endmacro; macro branch_348
MODE ==2 && !(A && B) && C;
property endmacro;

branch_unreachable_346_step_t =

Ibranch_path_346 =>
next(!branch_path_346) ;

endproperty

Properties generated by script for each coverage hole
No need to wait for code stability to start running
scripts and analyse remaining holes

%Coverage / Number of bugs

100% -

Coverage

Number of bugs

1
1
|
+
|
|
1
|
|
1
|
1
1
|
1
|
|
1
|
1
1

Schedule Slip

—p

i Project Time

Code End of End of
Stability project project
point (Planned) (Actual)

Methodology

Based on Temporal Induction
To prove a behaviour (B) for a synchronous design
1. Prove B at reset (reset property)

2. Prove that if B is true at time t, then it is true at t+1 (step property)

It follows that the behaviour is always true

e Simple properties over very small time windows
e Usually run in seconds on a (bounded) property checker

Flow
RTL
'y <
A
\ 4 \ 4
Simulate RTL and generate Testbench Assertions
coverage report A
\ 4
Generate properties for
coverage holes
A
‘ .
Pass Formally Fail and counter
check these example
properties
_’ Extra assumptions
Formal proof of on properties
unreachability - -
Coverage holes Analysis of counter
"1 can be filtered or example
Extra tests or
removed from .
RTL _» modification of
I
Testbench
Results
Coverage Metric Total Coverage holes Coverage holes
during excluded by
simulation Methodology
Statement 41074 331 309
Branch 12341 353 334
FEC 27230 1581 1080
Advantages

Versus Traditional Method

r r+1 r+2 r+3 r+4

clk

reset

B True True True

True

reset step step

(t=r)

step

(t=r+1) (t=r+2)

e Robust against RTL changes - can start earlier

Use machine time instead of engineering time

Less prone to human error as exclusions formally proven
Counter-examples help fill coverage holes efficiently
Extend use of formal methods to non-experts

Versus 'Off-the-shelf’ tools

e Runtime is hours rather than days
o Only run properties for coverage holes rather than all code
e White box approach, so can make properties more powerful
o Include branch nesting and prioritisation
o Add assumptions to all properties reflecting testbench
constraints

A collaboration between Infineon Technologies UK Ltd and the University of Bristol

