
1

Automated Formal Verification of
Spinner Based SOC IO Pad Frame Logic:

Challenges and Solution

Automated Formal Verification of Automated Formal Verification of
Spinner Based SOC IO Pad Frame Logic: Spinner Based SOC IO Pad Frame Logic:

Challenges and SolutionChallenges and Solution

Amit Roy, Supriya Bhattacharjee, Bijitendra MittraAmit Roy, Supriya Bhattacharjee, Bijitendra MittraAmit Roy, Supriya Bhattacharjee, Bijitendra MittraAmit Roy, Supriya Bhattacharjee, Bijitendra MittraAmit Roy, Supriya Bhattacharjee, Bijitendra MittraAmit Roy, Supriya Bhattacharjee, Bijitendra MittraAmit Roy, Supriya Bhattacharjee, Bijitendra MittraAmit Roy, Supriya Bhattacharjee, Bijitendra Mittra
Interra Systems Inc, Bangalore, IndiaInterra Systems Inc, Bangalore, IndiaInterra Systems Inc, Bangalore, IndiaInterra Systems Inc, Bangalore, IndiaInterra Systems Inc, Bangalore, IndiaInterra Systems Inc, Bangalore, IndiaInterra Systems Inc, Bangalore, IndiaInterra Systems Inc, Bangalore, India

Subir K. RoySubir K. RoySubir K. RoySubir K. RoySubir K. RoySubir K. RoySubir K. RoySubir K. Roy
Texas Instruments Inc, Bangalore, IndiaTexas Instruments Inc, Bangalore, IndiaTexas Instruments Inc, Bangalore, IndiaTexas Instruments Inc, Bangalore, IndiaTexas Instruments Inc, Bangalore, IndiaTexas Instruments Inc, Bangalore, IndiaTexas Instruments Inc, Bangalore, IndiaTexas Instruments Inc, Bangalore, India

DAC User Track 2010DAC User Track 2010

2

OutlineOutlineOutline

• Introduction
– Typical IO Subsystem Logic Structure
– Architecture of Spinner Generated IO RTL
– IO Logic Verification Environment

• Proposed Solution
– Initial Solution: Spinner FV Flow & it’s limitations

– Improved Solution: Unified Spinner FV Flow

– Unified Spinner FV Flow Diagram

• Results

• Conclusion & Summary

3

• Current SoCs are very complex in nature

– Incorporating increased functionalities and feature sets, which results in:

• Complex IO Structure consisting of:

– Intricate Multiplexing, Custom IO Cells, Power Management Logic etc.

• Complex IO fabric generated through third party tools like Spinner

• Manual Integration of SOC Core Logic into Spinner generated top level

wrapper

• Need of the hour:

– Leverage power of Formal Verification to carry out exhaustive validation

of such Complex IO fabrics by covering all possible scenarios

– Start the verification process at an early phase of RTL development to

result in a better Time To Market (TTM)

– Develop a robust and useful push-button verification flow that will be re-

usable across SOCs

IntroductionIntroductionIntroduction

4

Configuring CM to
MODE1 (IP1)/
MODE2 (IP2)

IP 1

IP 2

Muxing
Logic

Muxing
Logic

BSR
Logic

BSR
Logic

IO Buffer

IO PAD

always (((fv_conf_gpmc_a2[2:0] == 3'b001))-> (fv_gp 0_io_in[10] == gpmc_a2));

always ((fv_conf_uart2_ctsn[2:0] != 3'b000) -> (fv_ uart2_ctsn_in == 0));

always (((fv_conf_gp0_io5[2:0] != 3'b000) && (fv_co nf_gp0_io5[2:0] != 3'b001))

-> (gp0_io5 === 1'bZ));

always ((fv_conf_mcb_fxr[2:0] == 3’b000)
-> (fv_mcb_fxr_in == mcb_fxr));

always (((fv_conf_mcb_fxr[2:0] != 3’b000) &&
(fv_conf_mcb_clkr[2:0] == 3’b000))
-> (fv_mcb_clkr_in == mcb_clkr));

assert always (gp0_io5 == ‘0’);

assert (gp0_io5 == ‘0’);

always (fv_ioBuf_port_i_tsi0_clk_pi == '0');

always (fv_ioBuf_port_i_tsi0_dclk_pi_2 ==
not(topReset));

always (fv_ioBuf_port_i_tsi0_dclk_pholdl_3 == '0');

Control
Module (CM)

Input Enable, PU/PD

Mode Select = Mode1/Mode2

Typical I/O Pad Frame Logic StructureTypical I/O Pad Frame Logic StructureTypical I/O Pad Frame Logic Structure

Device
Pins

5

Architecture of Spinner Generated I/O RTLArchitecture of Spinner Generated I/O RTLArchitecture of Spinner Generated I/O RTL

Connectivity : Buffer – Buffer
Connectivity : Buffer – Device pin,
Reset state of pin

Tied ports, PHOLD*-hhv* checks

SoCSoC TOPTOP

Device
Pins

SOCSOC
CORE CORE

WRAPPERWRAPPER

IO COREIO CORE

IOIO
CTRLCTRL

IOIO
BSRBSR

IOIO
PWRPWR

IOIO
PADPAD

Multiplex
Function

IO
CTRL

Test
Multiplex
Function

Functional
Multiplex
Function

Gating
Function

IO
BSR

BSR
Function

IO
PWR

Power
Isolation
Function

IO
PAD

Cell
Function

Custom
Function

SOCSOC
CORECORE

GLUEGLUE
LOGICLOGIC

Connectivity : SOC Core – IO BSR

Connectivity : SOC Core – IO Pwr

Connectivity : SOC Core – IO Pad
SOC Core - Buffers

I/O/IO and PUPD functionality,
safe value at soc core,
device pin at invalid mode, and
pu/pd checks ON/OFF reset

CM

Complete SoC RTL is not loaded for the formal analysis – only Spinner RTL and relevant SoC core logic is loaded

6

AutoGen

I/O Logic Verification EnvironmentI/O Logic Verification EnvironmentI/O Logic Verification Environment

• AutoGen is a common platform within TI, built on Atrenta’s 1Team Genesis

Spinner FV Flow

Spinner

Spinner

Input Spec

IO RTL Files

IO Assertions
&

FV Environment

IFV

PASSPASS FAILFAIL

RTL Bug FixesRTL Bug Fixes

Specification Bug FixesSpecification Bug Fixes

7

Initial Solution: Spinner FV FlowInitial Solution: Spinner FV FlowInitial Solution: Spinner FV Flow

Pinout Specification as Golden

Manual Process / Spec Owner Flow

Pinout XLS

Spinner Specification as Golden

RTL Gen Spinner FV

Spinner XLS

Entry by
Spec owner

Entry by
Spec owner

RTL Gen Spinner FV

Spinner XLS

• Developed push-button FV flow for Spinner
generated IO Pad frame RTL

– Takes as input the Spinner specification XLS

– Generates PSL/SVA assertions along with the
verification environment

• Assertions for all the layers of the I/O fabric
structure and critical functionalities of IO pads

• Assertions to check the functionality of custom
IO cells such as MIPI DPHY, SMART2, I2C etc.

• Limitations of using Spinner XLS as input

� The IO subsystem RTL and the assertions get
generated from the same Spinner XLS.

�No information on SOC core logic is available in
Spinner XLS. So, cannot verify connectivity with
SOC core logic

� Some of the in-house design groups use Pinout
XLS (TI internal IO Spec format) as the golden
specification

� To use the existing flow for Pinout XLS, Spinner
XLS needs to be created manually from it.

8

Improved solution: Unified Spinner FV FlowImproved solution: Unified Spinner FV FlowImproved solution: Unified Spinner FV Flow

Spinner FV Flow

Spinner Independent
FV Flow

Formal
Verification

Environment`Unified Spinner FV FlowUnified Spinner FV Flow
Input

(Spinner or
Pinout

XLS)

• To overcome the limitations of the Spinner FV flow, we have come up
with a new Unified Spinner FV Flow,
– Preserves all the features of the Spinner FV flow

– Addition of new features like, Reset Checks, Z-value Checks, PU/PD based
Checks, Connectivity checks etc. are supported

– Added a sub-flow independentindependent of Spinner specification XLS

– Unified Spinner FV Flow is a superset subsuming the Spinner FV and
Spinner independent FV sub-flows

– A flow that caters to all design teams within TI WW

– Integrated into common framework for better availability to design teams

9

Unified Spinner FV Flow DiagramUnified Spinner FV Flow DiagramUnified Spinner FV Flow Diagram

Additional inputs for Spinner Independent FV Flow

IO Buffer HDL List

pinout

Connectivity info GlobalSignalTable IO Buffer HDL ListConnectivity info

pinout

.xls Gen

Command Line
Arguments

RTL Files

spinner

Spinner
RTL

Generator

Spec Owner
Flow

checkers

IFV
Run
File

TCL
Cmd
File

Integrated
into

AUTOGEN
[v-1.98.0.0]

GlobalSignalTable

connectivity info XLS - List of connectivity information from different IPs to
SoC wrapper boundary

globalSignalTable XLS - List of environmental constraints required for
verification

IO Buffer HDL List - List of buffer RTLs used in the design; to generate IO
buffer port information

10

Statistics for Unified Spinner FV Runs on
different SOCs

Statistics for Unified Spinner FV Runs on Statistics for Unified Spinner FV Runs on
different different SOCsSOCs

SOC

Verified

using

Unified

Spinner

FV Flow

Total no. of

IO Pad used

in the

design

No. of

RTL

releases

verified

by the

flow

Total

number of

Assertions

Generated

per RTL

release

Total

number

of Bugs

or Issues

found

Unified FV

Sub- Flow

used to

generate

assertions

and formal

environment

Average

time taken

to

complete

single IFV

run on one

RTL

release

(min)

Boundary

Toggle

Coverage

of the top

level

device pin

and SOC

core func.

ports

SOC 1 212 7 9137 34 Spinner

Independent

95 100% &

>90%

SOC 2 331 4 7290 8 Spinner

Dependent

63 100 % &

NA

SOC 3 387 2 7732 4 Spinner

Independent

77 NA & NA

Note: Formal verification is applied to each and ev ery IO Pad in each SOC in every
verification run

11

Conclusion & SummaryConclusion & SummaryConclusion & Summary

☺Unified FV Flow supports both the flows using Spinner XLS as well as Pinout XLS
providing an alternative verification path resulting in higher confidence

☺ Push-button automated flow resulting in minimum manual intervention needed to
generate the verification environment , which can be regressed on every new RTL
release

☺ Exhaustive verification using FV at early stage of design development; Bugs caught
early in the design cycle; Lesser time taken compared to conventional methods;
Better quality end product; Less TTM

☺ All SOC teams benefited due to availability of FV flow through AutoGen (common
platform available within TI)

☺ Boundary Toggle Coverage report enables users to improve the verification quality

� Manual creation of “connectivity” specification from SOC Core/IPs to IO core : This
process is time consuming and error prone

� Relevant portions of the design are loaded; Abstraction of RTL needed

� Future scope : BTC and CM FV Flows to be integrated into Unified Spinner FV Flow

12

Extensions to Unified Spinner FV FlowExtensions to Unified Spinner FV FlowExtensions to Unified Spinner FV Flow
• Boundary Toggle Coverage (BTC) Flow

– Independent post-processing script

– Provides the toggle coverage information of the top level SOC ports from the IFV runs

– BTC parses the IFV log files for passed assertions and the top level RTL for the list of ports

and generates a toggle coverage report for all the top level SOC ports

– If an assertion passes, it is guaranteed by any model checking based formal tool that both 0-

to-1 and 1-to-0 transitions have been verified for the given pair of signals

• The pair of signals in a passed assertion is reported as covered whereas signals used in
a failed assertion are reported as not covered

– The generated coverage is captured in the form of an XLS

• Gives better visibility on the completeness of verification using the FV Flow

• Control Module (CM) FV Flow

– Flow to verify the following behavior of any Control Module within the SOC

• Internal register read and write checks
• Connectivity checks from Control Module to the boundary of the SOC core
• Default Value Checks (just after reset deactivation) of the ports, such as, Input Enable,
Mode Select, Pull Controls, and Control Signals of the Custom IOs, at the boundary of

the SoC Core Module.

13

Set of Assertions Generated by Unified
Spinner FV Flow for an SOC

Set of Assertions Generated Set of Assertions Generated by Unified by Unified
Spinner FV Flow for an SOCSpinner FV Flow for an SOC

Category of Assertions (Functionalities verified

using Unified Spinner FV Flow)

No. of Assertions

(approx) generated

per RTL release

IO Muxing Checks 499

Device Pin Pull-UP/Pull-Down Checks 57

Default Value on Reset Checks 317

PHOLD, HHV Tie-value Checks 2544

I2C Buffer Functionality Checks 240

SOC Core to Custom IO Connectivity Checks 900

Custom IO to Top device pin Connectivity Checks 29

SOC Core to BSR boundary connectivity Checks 972

Protected/Inhibit/Prohibit Value Checks 137

SOC Core to IO Pad buffer connectivity Checks 3002

Special SMART2, MIPI cell connectivity Checks 440

