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Formal verification for ARM Cortex A9MP
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Cortex A9MP formal setup
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High-level property verification

 High-level properties difficult to verify by simulation.

 Cache coherency, state properties:

 If line L is “exclusive” in one CPU, it is invalid or has a different tag in all 

other CPUs.

 Cache coherency, behavioral properties:

 When CPU0 wants to fill line L and CPU1 already has that line, its 

content moves without corruption from CPU0 to CPU1.

 Absence of dead-lock / livelock

 Lock characterization: AXI ports can always answer...eventually.

 Cache line duplication on TAGRAM

 If two ways have lines valid at index I, then the tags are different.

It’s easy to specify properties, and to get CEXs

The challenge is to get full proofs instead of partial ones
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FV for errata analysis of ARM IPs
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Formal for customer and internal support

 Customer: “Using your IP, I observed this output trace. It is incorrect”

 ARM: “Could you give us details on the input sequence please?”

 Customer: “No!”

 ARM –internally: “Let’s try FV to get the inputs”

 Customer: “Is it possible that your IP outputs such a sequence?”

 ARM: “Please wait...”

 ARM-internally: “Guys, does anybody know if...”, “TRM doesn’t say 

anything about that (UNPREDICTABLE)”, “Looking at the RTL, it’s not 

obvious”, “Maybe, maybe not”,... , “FV will say that for sure”

 Formal verification is also very valuable for internal “customers”:

 dead-code detection

 FIFO sizing

 seq. equiv. checking

 reset problems

 missing clock-enables,

 MBIST problems
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Formal support stories

 On previous-generation L2 cache: “can these RAM control 

signals stay active for only 1 cycle when the latency is > 1?”

 Technical leader was about to answer “No” after RTL review and 

simulation runs. But asked the formal guy

 FV tool setup at the airport while waiting for a flight...

 Result when landing in Cambridge:

 Full proofs for all signals

 Except for one CEX. Could be refined to identify the precise case.

 No incorrect answer given to the customer

 On a processor core: “is the data replicated on half-word 

reads?”

 Seems true looking at RTL and waveforms

 FV identified cases where it’s wrong. But they are out-of-spec.
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Automatic formal flow (1)

 Hundreds of properties. Only “verified” by simulation up to 

product release.

 Formal flow to maximize bug detection / exhaustive proofs. 

But avoid having to use advanced FV techniques manually.

 Based on different abstraction and constraint levels:

 Abstractions are safe and incomplete: a proof is a proof, but a CEX 

may be a false-negative

 Constraints are unsafe and complete: a proof may be a false-positive, 

but a CEX is a real one

abstraction level
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level valid CEX

full proofs

real design
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Automatic formal flow (2)
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Formal flow applied to Cortex A9 assertions

 Some bugs found. Usually very corner cases but reachable in 

short instruction sequences (3 or 4, 20 to 40 cycles).

 Formal CEXs allow to identify bug nests, then targeted by 

directed-random simulation.

 Formal CEXs are usually easier to debug than random tests.

 Full / partial proof repartition depends on the modules:

 The quality of properties varies. The best ones are state 

encoding checks: they indirectly detect problems that are 

difficult to formalize:

 local deadlocks

 data corruptions

CortexA9 blocks Data side Instruction side Core

Full proofs 20% 0% 50%
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Formal verification tool feedback

 FV tools must be simple to use (GUI, setup, basic proof commands,...).

 But must also be configurable enough.

 Recent proof engine improvements

 Usually excellent for bug-chasing

 BDD engines useable only on very small designs, but for difficult proofs

 Users need to be able to understand and select the different proof engines 

the tools provide.

 Features for formal agnostics are very helpful to quickly describe a 

behavior and to define environment constraints without property coding.

 Advanced techniques to find

 Design abstractions

 State abstractions

 Invariant lemmas

are valuable but very time consuming, needing a formal engineer and the 

block designer.
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General feedback on FV 

Getting exhaustive proofs is difficult compared to 

getting reasonable deep enough partial proofs.

Formal is excellent to answer urgent questions safer 

than code review or simulation.

A good ROI in formal verification 

is not in trying to get full proofs,

but in catching design bugs and

answering design queries.


