A Formal Pot-Pourri

Laurent Arditi

laurent.arditi@arm.com

ARM, Processor Division, Sophia-Antipolis, France
A,

o8 \

to" DAC User Track, June 2010

.otV A
ld® The Arch™ \Nof\

®
l The Architecture for the Digital VWorld® ARM

Formal verification for ARM Cortex AOSMP

/ \ Cache coherency,

High-level Deadlocks, |
Properties Cache line duplication,/

Errata analysis
Customer support
MBIST validation

Sequential
Equivalence
checking

Automatic flow
for many
properties

Low-level
properties

Design sizing
Embedded
OVLs

Dead code
analysis

2 DAC 2010 — User Track Poster

Cortex A9MP formal setup

Cortex A9 MP

fake core n

TLB §
checker)

Data RAM

—

TAG RAM

-

abstract RAM

abstract RAM

TAG RAM -

11

A9 CPU A9 CPU A9 CPU A9 CPU
Core Iside
Dside
Slots Unit
L1 cache
controller
MMU /TLB BIU
> > > >
= = = =

Snoop Control Unit

A

AXI protocol
checker <—"

IXV

A

>
a4 AXI protocol
) checker

DAC 2010 — User Track Poster

High-level property verification

= High-level properties difficult to verify by simulation.

= Cache coherency, state properties:

= |fline L is “exclusive” in one CPU, it is invalid or has a different tag in all
other CPUSs.

= Cache coherency, behavioral properties:

= When CPUp wants to fill line L and CPU; already has that line, its
content moves without corruption from CPUg to CPU;.

= Absence of dead-lock / livelock
= | ock characterization: AXI ports can always answer...eventually.

= Cache line duplication on TAGRAM
= |f two ways have lines valid at index [, then the tags are different.

It's easy to specify properties, and to get CEXs
The challenge is to get full proofs instead of partial ones

4 DAC 2010 — User Track Poster

FV for errata analysis of ARM IPs

\L

~ TN
~ Can they be more
Bugs found completel_y
using standard characterized?
verification Yes, relaxing some
flows constraints
/ S~ . —
In which versions | The proof
of the design are depth is
considered

Gan they be examined \
by FV?

Identify the bug as a property
Use FV tools to get a counter-
example

All could be examined with
bug-chasing engines, within

Qinutes /

they?
Usually only partial

as sufficient

proofs if no CEX _
- .rls the fix
correct?

Usually only
partial proofs if
no CEX

N

’

DAC 2010 — User Track Poster

Formal for customer and internal support

= Customer: “Using your IP, | observed this output trace. It is incorrect”
= ARM: “Could you give us details on the input sequence please?”
= Customer: “No!”

= ARM —internally: “Let’s try FV to get the inputs”

= Customer: “Is it possible that your IP outputs such a sequence?”

= ARM: “Please wait...”

= ARM-internally: “Guys, does anybody know if...”", “TRM doesn’t say
anything about that (UNPREDICTABLE)”, “Looking at the RTL, it's not

obvious”, “Maybe, maybe not”,..., “FV will say that for sure”

= Formal verification is also very valuable for internal “customers”:
= dead-code detection = reset problems

= FIFO sizing = missing clock-enables,
= se(. equiv. checking = MBIST problems

6 DAC 2010 — User Track Poster

Formal support stories

= On previous-generation L2 cache: “can these RAM control
signals stay active for only 1 cycle when the latency is > 17"

= Technical leader was about to answer “No” after RTL review and
simulation runs. But asked the formal guy

= FV tool setup at the airport while waiting for a flight...
= Result when landing in Cambridge:
= Full proofs for all signals

= Except for one CEX. Could be refined to identify the precise case.
= No incorrect answer given to the customer

= On a processor core: “is the data replicated on half-word
reads?”

= Seems true looking at RTL and waveforms

= FV identified cases where it's wrong. But they are out-of-spec.

DAC 2010 — User Track Poster

Automatic formal flow (1)

= Hundreds of properties. Only “verified” by simulation up to
product release.

= Formal flow to maximize bug detection / exhaustive proofs.
But avoid having to use advanced FV technigues manually.

= Based on different abstraction and constraint levels:

= Abstractions are safe and incomplete: a proof is a proof, but a CEX
may be a false-negative

= Constraints are unsafe and complete: a proof may be a false-positive,
but a CEX is a real one

)<— real design
full proofs
- abstraction level

DAC 2010 — User Track Poster

constraint
level

7\

Automatic formal flow (2)

All properties

. ()
%%,

proved bug S, Abstractions

Add
constraints

Y
infinite]
Proven Partially
properties proven
properties
~_ ~_

9 DAC 2010 — User Track Poster

Formal flow applied to Cortex A9 assertions

= Some bugs found. Usually very corner cases but reachable In
short instruction sequences (3 or 4, 20 to 40 cycles).

= Formal CEXs allow to identify bug nests, then targeted by
directed-random simulation.

= Formal CEXs are usually easier to debug than random tests.
= Full / partial proof repartition depends on the modules:

CortexA9 blocks Instruction side

Full proofs 20% 0% 50%

= The quality of properties varies. The best ones are state
encoding checks: they indirectly detect problems that are
difficult to formalize:
= |ocal deadlocks
= data corruptions

10 DAC 2010 — User Track Poster

Formal verification tool feedback

= FV tools must be simple to use (GUI, setup, basic proof commands,...).
= But must also be configurable enough.

= Recent proof engine improvements
= Usually excellent for bug-chasing
= BDD engines useable only on very small designs, but for difficult proofs

= Users need to be able to understand and select the different proof engines
the tools provide.

= Features for formal agnostics are very helpful to quickly describe a
behavior and to define environment constraints without property coding.

= Advanced techniques to find
= Design abstractions
= State abstractions
= |nvariant lemmas

are valuable but very time consuming, needing a formal engineer and the
block designer.

11 DAC 2010 — User Track Poster

General feedback on FV

= Getting exhaustive proofs is difficult compared to
getting reasonable deep enough partial proofs.

m Formal Is excellent to answer urgent questions safer
than code review or simulation.

A good ROI In formal verification

IS not In trying to get full proofs,

but in catching design bugs and
answering design queries.

12 DAC 2010 — User Track Poster

