

Using a Formal Property Checker for Simulation Coverage Closure

 Tim.Blackmore@infineon.com

David.Halliwell@infineon.com

Phil.Barker@infineon.com

Kerstin.Eder@bristol.ac.uk

Naresh.Ramaram@infineon.com

A collaboration between Infineon Technologies UK Ltd and the University of Bristol

 Code Coverage indicates how thoroughly the testbench has
exercised the source code

 Analyzing Coverage holes determines whether more tests are
needed, or if that code is unreachable

343 if (A && B)
344 512 X = X +2 ;
345 else if (C)
346 **0** X = X +3;
347 else
348 417 X = X + 4;

343 if (MODE == 2)
344 begin
345 if (A && B)
346 512 X = X +2 ;
347 else if (C)
348 **0** X = X +3;
349 else
350 417 X = X + 4;
351 end

Figure1: RTL code with coverage

hole. Holes are usually identified by

line number.

Figure2: After bug fix, line numbers have changed.

The hole needs to be re-analysed.

Number of bugs

Coverage

%Coverage / Number of bugs

Code

Stability

point

End of

project

(Actual)

Project Time

End of

project

(Planned)

100%

Actual bug

curve

Ideal bug curve

Ideal coverage

curve Actual coverage

curve

Schedule Slip

 Based on Temporal Induction
 To prove a behaviour (B) for a synchronous design

 1. Prove B at reset (reset property)
 2. Prove that if B is true at time t, then it is true at t+1 (step property)
 It follows that the behaviour is always true

 Simple properties over very small time windows
 Usually run in seconds on a (bounded) property checker

clk

B

r r + 1 r + 2 r + 3 r + 4

reset step step

True

(t = r) (t = r + 1)

True

reset

(t = r + 2)

True

step
…..

. …..

. …..

.

True

 Motivation - Difficulties with achieving Coverage Closure during
simulation-based testing

 Describe how a Formal Property Checker can be used to aid
Coverage Closure

o Based on Temporal Induction
o Give example properties

Describe the flow

Overview

Coverage Holes

Coverage Closure

Methodology

 Coverage analysis is left until the code stability point

 Bugs found during Coverage closure potentially result in schedule
slips

Flow

1080 1581 27230 FEC

334 353 12341 Branch

309 331 41074 Statement

Coverage holes

excluded by

Methodology

Coverage holes

during

simulation

Total Coverage Metric

Results

Property Generation

343 if (A && B)
344 512 X = X +2 ;
345 else if (C)
346 **0** X = X +3;
347 else
348 417 X = X + 4;

343 if (MODE == 2)
344 begin
345 if (A && B)
346 512 X = X +2 ;
347 else if (C)
348 **0** X = X +3;
349 else
350 417 X = X + 4;
351 end branch_unreachable_346_reset;

branch_unreachable_346_step_t;

branch_unreachable_348_reset;

branch_unreachable_348_step_t; macro branch_346
 !(A && B) && C;
endmacro;

property
branch_unreachable_346_step_t =
 !branch_path_346 =>
 next(!branch_path_346) ;

endproperty

macro branch_348
 MODE ==2 && !(A && B) && C;
endmacro;

Advantages

Extra tests or

modification of

Testbench

Extra assumptions

on properties

RTL

Generate properties for

coverage holes

Simulate RTL and generate

coverage report

Analysis of counter

example

Formal proof of

unreachability -

Coverage holes

can be filtered or

removed from

RTL

Testbench Assertions

Pass
Fail and counter

example
Formally

check these

properties

Versus Traditional Method
 Robust against RTL changes – can start earlier
 Use machine time instead of engineering time
 Less prone to human error as exclusions formally proven
 Counter-examples help fill coverage holes efficiently
 Extend use of formal methods to non-experts

Versus ‘Off-the-shelf’ tools

 Runtime is hours rather than days
o Only run properties for coverage holes rather than all code

 White box approach, so can make properties more powerful
o Include branch nesting and prioritisation
o Add assumptions to all properties reflecting testbench

constraints

 Properties generated by script for each coverage hole
 No need to wait for code stability to start running

scripts and analyse remaining holes

