
A Formal Pot-Pourri

Laurent Arditi
laurent.arditi@arm.com

ARM, Processor Division, Sophia-Antipolis, France

DAC User Track, June 2010



2 DAC 2010 – User Track Poster

Formal verification for ARM Cortex A9MP

Automatic flow

for many

properties

Errata analysis

Customer support
MBIST validation

Sequential

Equivalence

checking
Dead code

analysis

Design sizing

Low-level

properties

Embedded

OVLs

Cache coherency,

Deadlocks,

Cache line duplication,

...

High-level

Properties



3 DAC 2010 – User Track Poster

Cortex A9MP formal setup

Cortex A9 MP

A9 CPU

Dside

L1 cache 

controller

MMU / TLB BIU

Slots Unit

IsideCore

A9 CPU A9 CPU A9 CPU

Snoop Control Unit

Data RAM

TAG RAM

TAG RAM

A
X

I

A
X

I

A
X

I

A
X

I

A
X

I

A
X

I

AXI protocol 

checker

AXI protocol 

checker

abstract RAM

abstract RAM

TLB 

checker

fake core



4 DAC 2010 – User Track Poster

High-level property verification

 High-level properties difficult to verify by simulation.

 Cache coherency, state properties:

 If line L is “exclusive” in one CPU, it is invalid or has a different tag in all 

other CPUs.

 Cache coherency, behavioral properties:

 When CPU0 wants to fill line L and CPU1 already has that line, its 

content moves without corruption from CPU0 to CPU1.

 Absence of dead-lock / livelock

 Lock characterization: AXI ports can always answer...eventually.

 Cache line duplication on TAGRAM

 If two ways have lines valid at index I, then the tags are different.

It’s easy to specify properties, and to get CEXs

The challenge is to get full proofs instead of partial ones



5 DAC 2010 – User Track Poster

FV for errata analysis of ARM IPs

Bugs found 
using standard 

verification 
flows

Can they be examined 
by FV?

Identify the bug as a property

Use FV tools to get a counter-
example

All could be examined with 
bug-chasing engines, within 
minutes

Can they be more 
completely 
characterized?

Yes, relaxing some 
constraints

In which versions 
of the design are 
they?

Usually only partial 
proofs if no CEX

Is the fix 
correct?

Usually only 
partial proofs if 
no CEX

The proof 
depth is 
considered 
as sufficient



6 DAC 2010 – User Track Poster

Formal for customer and internal support

 Customer: “Using your IP, I observed this output trace. It is incorrect”

 ARM: “Could you give us details on the input sequence please?”

 Customer: “No!”

 ARM –internally: “Let’s try FV to get the inputs”

 Customer: “Is it possible that your IP outputs such a sequence?”

 ARM: “Please wait...”

 ARM-internally: “Guys, does anybody know if...”, “TRM doesn’t say 

anything about that (UNPREDICTABLE)”, “Looking at the RTL, it’s not 

obvious”, “Maybe, maybe not”,... , “FV will say that for sure”

 Formal verification is also very valuable for internal “customers”:

 dead-code detection

 FIFO sizing

 seq. equiv. checking

 reset problems

 missing clock-enables,

 MBIST problems



7 DAC 2010 – User Track Poster

Formal support stories

 On previous-generation L2 cache: “can these RAM control 

signals stay active for only 1 cycle when the latency is > 1?”

 Technical leader was about to answer “No” after RTL review and 

simulation runs. But asked the formal guy

 FV tool setup at the airport while waiting for a flight...

 Result when landing in Cambridge:

 Full proofs for all signals

 Except for one CEX. Could be refined to identify the precise case.

 No incorrect answer given to the customer

 On a processor core: “is the data replicated on half-word 

reads?”

 Seems true looking at RTL and waveforms

 FV identified cases where it’s wrong. But they are out-of-spec.



8 DAC 2010 – User Track Poster

Automatic formal flow (1)

 Hundreds of properties. Only “verified” by simulation up to 

product release.

 Formal flow to maximize bug detection / exhaustive proofs. 

But avoid having to use advanced FV techniques manually.

 Based on different abstraction and constraint levels:

 Abstractions are safe and incomplete: a proof is a proof, but a CEX 

may be a false-negative

 Constraints are unsafe and complete: a proof may be a false-positive, 

but a CEX is a real one

abstraction level

constraint

level valid CEX

full proofs

real design



9 DAC 2010 – User Track Poster

Automatic formal flow (2)

All properties

Add

constraints

bug 

chase

exhaustive 

proof

exhaustive 

proof

bug 

chase

CEX

?

infinite

proved

Abstractions

?

Proven

properties

Violated

properties

proved

?

Partially

proven

properties



10 DAC 2010 – User Track Poster

Formal flow applied to Cortex A9 assertions

 Some bugs found. Usually very corner cases but reachable in 

short instruction sequences (3 or 4, 20 to 40 cycles).

 Formal CEXs allow to identify bug nests, then targeted by 

directed-random simulation.

 Formal CEXs are usually easier to debug than random tests.

 Full / partial proof repartition depends on the modules:

 The quality of properties varies. The best ones are state 

encoding checks: they indirectly detect problems that are 

difficult to formalize:

 local deadlocks

 data corruptions

CortexA9 blocks Data side Instruction side Core

Full proofs 20% 0% 50%



11 DAC 2010 – User Track Poster

Formal verification tool feedback

 FV tools must be simple to use (GUI, setup, basic proof commands,...).

 But must also be configurable enough.

 Recent proof engine improvements

 Usually excellent for bug-chasing

 BDD engines useable only on very small designs, but for difficult proofs

 Users need to be able to understand and select the different proof engines 

the tools provide.

 Features for formal agnostics are very helpful to quickly describe a 

behavior and to define environment constraints without property coding.

 Advanced techniques to find

 Design abstractions

 State abstractions

 Invariant lemmas

are valuable but very time consuming, needing a formal engineer and the 

block designer.



12 DAC 2010 – User Track Poster

General feedback on FV 

Getting exhaustive proofs is difficult compared to 

getting reasonable deep enough partial proofs.

Formal is excellent to answer urgent questions safer 

than code review or simulation.

A good ROI in formal verification 

is not in trying to get full proofs,

but in catching design bugs and

answering design queries.


