
DAC 2010 User Track Slide 1

Maximizing the Value of Your Formal Run

Scott Meeth
 scott.meeth@sbcglobal.net
 Sun Microsystems, Inc
George Plouffe
       george.plouffe@sun.com
 Sun Microsystems, Inc
DAC 2010 User Track 

mailto:george.plouffe@sun.com


DAC 2010 User Track Slide 2

Presentation Outline
• Ideal formal verification flow
• Fallback
> Making sense of bounded proofs
> Evaluating bounded proofs
> Case Study
> Ideas



DAC 2010 User Track Slide 3

Formal verification

• Functional properties
> Specify target properties
> basically, assertions about outputs

> Specify input constraints
> basically, assertions about inputs

• Goal
> Prove that the properties hold for all input sequences that 

satisfy the constraints



DAC 2010 User Track Slide 4

Formal Verification Success

• Success is relative
> To the quality of your properties
> To the quality of your constraints

• Ideal success
> Get confidence in your properties by using a model 

checker to obtain full proofs of them
> I ignore the question of the strength of the properties...

> Get confidence in your constraints in some robust way
> Probably the best way is Assume/Guarantee: prove that the 

logic driving your inputs satisfies the respective constraints



DAC 2010 User Track Slide 5

Life is like...

• Try for the ideal
> Hopefully you achieve it, and on schedule

• Often you have tradeoffs
> Invest more time in the effort
> To get better quality results

• If you have to settle for less-than-ideal outcome
> Want to maximize outcome quality vs invested effort
> Want to objectively assess the outcome quality
> You can often get a nice consolation prize



DAC 2010 User Track Slide 6

Outcome quality vs invested effort

• For any number of reasons, you may be unable to 
achieve the ideal outcome
> fully realized properties and constraints

• Suggestions, then, for next-best confidence in
> constraints (in lieu of Assume-Guarantee)
> properties (in lieu of convergence)

• Rest of talk
> assume we're resigned to settling
> no convergence for one or more targets
> no assume guarantee on inputs



DAC 2010 User Track Slide 7

Running in simulation environments

• Often a project has a well-developed simulation 
environment
> Thorough suite of directed tests
> Comprehensive constrained random environment

• Then you can get a fair amount of confidence in 
your constraints pretty much for free
> You really should run your constraints against simulation 

environments anyway
> Include them, and your properties, in the regressions if 

possible



DAC 2010 User Track Slide 8

Running in sim envs

• At the very least, this keeps formal and sim in sync
• If a constraint fires in sim
> Most likely your formal environment is over-constrained

• If a property fires in sim, and the property does not 
get a counterexample in formal runs
> If the formal runs converge, this is due to over-constraint
> sim env exercises input sequence your formal env precludes

– so there's a constraint firing in there too

> If your formal runs don't converge, firing could be due to
>  sequential depth: required input sequence is too long, or
>  again, over-constraint is possible



DAC 2010 User Track Slide 9

Simulation environment

• Everything is relative
> If your project's simulation environment is robust and 

comprehensive, and people have confidence in it
> Then you can leverage this effort, and get a similar 

amount of confidence in your constraints (and properties) 
nearly for free

• Running the properties in formal figures to give you 
additional coverage
> Simulation and formal environments present stimulus 

differently



DAC 2010 User Track Slide 10

Simulation, formal complementary

• Formal and simulation: input sequence generation
> The sim environment: kind of depth-first search
> each test is a single input sequence
> breadth is obtained by additional runs

– but how much additional breadth for how many additional runs?

> sequential depth is obtained by running a longer diag, which is 
linear in time/space

– but how additional coverage attained with longer runs?

> The formal environment: kind of breadth-first search
> a run is like a constrained random suite, but with complete 

coverage (allowed by constraints, and perhaps up to a bound)
> but sequential depth is obtained at exponential cost in 

time/space



DAC 2010 User Track Slide 11

Bounded proofs

• Trying to get convergence: tools
> automatic:
>  abstraction, design space tunneling, engine choices

> manual:
>  design space tunneling, state space tunneling, abstraction

• If you need to make do, try to maximize depth of 
bounded proof
> And try to quantify the progress

• Bounded proof of N iterations means there is no 
counterexample of length ≤ N satisfying constraints 



DAC 2010 User Track Slide 12

Case study

• Design
> Coherence Unit of processor
> Interfaces to L2$, MCU, Link

• Model Checking tool used JasperGold
• Property
> When a Transaction ID (TID) is re-used, everything that 

needs to be finished from the previous usage is done
> What needs to be finished for given TID?
> depends on request type, where memory data is coming from, if 

cache data is coming, node configuration, etc



DAC 2010 User Track Slide 13

Maximizing depth of bounded proofs

• Combinations of engines (
> We happen to have access to lots of compute resources
> set_engine_mode {h h d i b k}

• Final deepest bound attained by B, H, K
> Occasionally engines I,D attained deepest
> It varied as we made changes to constraints

• Counterexamples from B, H
• Compute resource capacity, memory and runtime



DAC 2010 User Track Slide 14

What to make of bounded proof

• Quality of outcome is relative to
> Quality of counterexamples obtained along the way
> Depth of these counterexamples
> formal counterexamples are much more compact than sim;

(nearly) every cycle is meaningful/necessary
> formal has tight control for generating mischief (corner cases)

> Depth the bounded proof reached
> Presence/absence of certain design constructs
> counters, FIFOs
> If you've not abstracted them, you need proof bound deep 

enough to exercise significant range of behavior
> In our case: no counters, shallow FIFOs (depth 1 or 2)



DAC 2010 User Track Slide 15

What we made of bounded proof

• Along the way, we got a 25-cycle counterexample
> Included the start and finish of a request,
> Followed by a spurious message from the design on 

behalf of the request, after it was cleared;
> Seeing this, when we got bounded proof of that property 

to 30 cycles, we felt reasonably confident (although...)

• Later, we got a 37-cycle counterexample
> Included start and finish of 2 requests consecutively
> Counterexample due to state from first request persisting 

into the second
> Constraint problem, but felt good about coverage depth



DAC 2010 User Track Slide 16

Outcome

• Properties
1. 39 iterations: Engine H
2. 81 iterations: Engine K (this one had nice 37-cycle cex)
3. 129 iterations: Engine K
4. 31 iterations: Engine B
5. 31 iterations: Engine B

● Properties 1,2,3: locally sourced
● Properties 4,5: remotely sourced

● not sure why they bogged down more than first three



DAC 2010 User Track Slide 17

Summary

• Primary goal:
> convergent properties
> verified constraints (Assume-Guarantee)

• Apart from that (for whatever reason)
> You can get a decent amount of confidence
> by putting Jasper to work to help give confidence
> by leveraging simulation environments

• Big caveat though
> Bounded proof of liveness property?
>Need some effort here to interpret; not so clear how useful


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

