DAC 2010 USER TRACK

Author: Matthew A. Hsu, Matthew A. Hsu Consulting

consulting@mhsu.com (408) 439-8798

Let's See You Simulate This! Using Formal to Verify a Synthesizable Testbench Constraint Solver.
ABSTRACT

Designs require very limited use of randomization constructs. Testbenches on the other hand, should attempt to randomize many things - essentially anything that is not specifically required to prove a set of one or more design requirements.

This paper describes the design and verification of a specialized block called a Synthesizable Constraint Solver. It’s a very atypical block that performs random operations for a synthesizable testbench. The motivation is to take advantage of emulation or prototyping platform performance without slowing it down by tying it to a simulator. Performance gains of 10K to 100M times that of simulation are expected.

The Synthesizable Constraint Solver is a block that solves this type of problem:

· 25% of the time generate: 0

· 25% of the time generate: random(10, 1)

· 50% of the time generate: random(100, 11)

This block would be used hundreds of times in a synthesizable testbench.
THE DESIGN

This block is quite small, only a few thousand gates, but complex and it had to be proven to work for all possible inputs. The block diagram below shows the combinations of inputs that needed to be verified.
[image: image1.emf]
For the algorithm 2 randomizations are required. First we must randomly select the “percentage” bin. For that we will need:

· A minTable and maxTable hold minimum and maximum values for each bin

· A randomizer to pick an address from 1 to numValidEntries

Next, we must randomize between minimum and maximum values read from tables. Both randomizations require this solution: random(M, N) where M ≥ N. The hard part is that the randomization is to a non-power of 2.
[image: image2.emf]
Problems with simulation are:
· It will take too long (2^16 * 2^ 16 * 2^16 combinations of inputs)

· Even if you wrote a ‘C’ algorithm it would take too long

· The conditionals are easy, it’s the LFSR that first gets you …

· Then the multiplier gets you …

Given the vast combinations of inputs, simulation would take too long, so formal verification was used.

Advantages to using formal:

· The formal proof was easy to understand

· Formal was fast – it solved the problem in two hours

· Formal was thorough – it identified additional issues while constructing constraints
The simple proof:

property value_within_constraints_P;

 @(posedge clock)

 disable iff (reset)

 (constraint_valid |-> ((constraint_value <= constraint2_reg &&

 constraint_value >= constraint1_reg) ||

 (constraint_value <= constraint1_reg &&

 constraint_value >= constraint2_reg)));

endproperty

value_within_constraints_A : assert property(value_within_constraints_P);

