
`

Import
Physical

Constraints

Import Timing Constraints
3 modes and 2 corners

Timing
Correlation
Olympus VS

PT
OK

Full Chip Optimization
(Import SPEF + MCMM
optimization + Update

timing + ECO Route

Post opt)

Timing
post Opt

= OK

Export DEF , VERILOG for Extraction for PT &
GDS for Physical Verification

DEF files - Top ,
Partitions & HM

SPEF Files -
Top,

Partition &
HM

LEF & LIB files
– IO’s, MEM

Modify
SDC

YES

YES

NO

2nd Opt
Loop -

selected
clocks or

paths

NO

With ever increasing complexity & more -n- more features

being squeezed into single chip, die sizes are increasing

phenomenally

 Due to huge design size and with increase in number of

modes & number of corners for timing closure, raises the

possibility of cross mode setup-hold conflict

 Multiple modes and corner are contributing to large

number of ECO cycle required for timing closure

 Cycle times are dramatically increasing, with increase in

eco loops , which is impacting time-to-market schedule

So Needed solution which can reduce design closure cycle

time

Set-top box decoder that

integrate an MPEG-4 decoder

 SOC designed - 65nm process

node & shrunk to 55nm

 Contains 4.5 million instances

 3 partition units

 311 macros/memories

 Has 3 Cores

 640 IO‟s (360 functional pads)

 125 clock domains

 4 operating modes &

3 process corners

Inaccurate timing models used in existing hierarchical

timing closure methodology, in which the chip was

partitioned, the partitions implemented, and then instantiated

at the chip level as abstraction models for top-level timing

signoff

 Need to rely on pessimistic timing budgets allocated

during chip budgeting, which often caused I/O & inter-

partition timing violations

 Due to the inaccurate timing models, „flat‟ chip-level clock

tree synthesis couldn‟t be performed to meet very precise

skew and latency targets. This required iteration during

timing closure phase

 Handling MCMM timing in our flow was also a challenge.

The block implementations were done for best/worst case

timing in 2 modes, but signoff timing had to met for several

other modes and corners. Therefore, we usually found some

„cross corner‟ or „cross mode‟ violations during signoff that

were not seen during implementation phase. Analysis and

fixing these through ECO loops was possible but can take

several iterations and engineers, also it is expensive from a

schedule standpoint

 Tool‟s capacity to handle 18 million gate design „flat‟ is one

of the limitation which is forcing us to opt for hierarchical

timing closure methodology

We needed a solution to improve the MCMM closure, allow a

full-chip optimization platform without changing logical

partitioning, can integrate seamlessly into existing

methodology without much perturbing of existing flow, and

do the chip assembly and finishing with fewer sign-off

iterations and fewer resources.

This is where Mentor Olympus-SoC came in

Full Chip Optimization Methodology

 Top and Partitions were placed & routed in SoC-

Encounter and then ported to Olympus-SoC for full-chip

MCMM optimization. In SoC-Encounter functional and scan-

shift mode were only optimized for timing

 Only 3 modes and 2 corners were defined for optimization

in Olympus-SoC

 Optimized design at top level including IO‟s , Top and

block level concurrently

 Maintained design logical hierarchy and partition

boundary while doing full flat timing analysis

 DEF, Verilog and SPEF were used for some of the don't

touch HM for optimization, to have full picture of clock

source point

 Freeze Clock Network & HM for which DEF , Verilog were

defined to avoid any modification while optimization

 Setup, Hold, transition, capacitance all were optimized

concurrently

 First optimization was white space driven, where placed

cells movement was not allowed

 Dummy Filler cells were defined for block halos as

Olympus doesn‟t understand def blockages defined for

block halos

We performed timing correlation between our sign-off tool

and Olympus-SoC. The results showed a very close

correlation with Olympus within 10% of the sign-off reference

slack calculations.

Signoff vs. Olympus-SoC timing correlation scatter diagram
for worst case (top) and for best case (bottom). Signoff
reference slacks are shown along the Y axis, Olympus-SoC
slacks are on the X axis.

Range Color

0.000 – 0.050 ns

0.000 – 0.100 ns

0.000 – 0.200 ns

0.000 – 0.400 ns

0.000 – 0.700 ns

0.000 – 1.000 ns

For the MCMM optimization, we set up the mode-corner

combinations information upfront, and the tool quite

smoothly and automatically optimized for all the relevant

scenarios. At the beginning of the full flat optimization flow,

we generated a variability report from within Olympus-SoC,

which showed the initial timing situation for blocks in the full

chip context. The following table shows the initial vs final

variability report:

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

WNS -Bf Opt

WNS - Aft Opt

WHS- Bf Opt

WHS Aft Opt

0

5000

10000

15000

20000

25000

30000

35000

WNS #Endpts Bf OPT

WNS #Endpts Aft
OPTeries 2

0

1000

2000

3000

4000

5000

6000

WHS #Endpts Bf OPT

WHS #Endpts Aft OPT

Olympus-SoC was able to load and process our full 18 million
gate design full flat, while maintaining the designs logical
hierarchy.

We liked the fact that timing modeling of partitions/blocks
was not a requirement for chip assembly. We needed the
freedom to choose which blocks to abstract, depending on
the top-level paths and the level of accuracy needed. For
example, we might abstract a block that is cloned heavily,
while a block that is not cloned can remain un-abstracted,
giving us greater accuracy in chip-level timing
measurements. This is particularly important when
optimizing inter-block paths because the tool has the ability
to see the entire path end-to-end.

The following Figure (a) shows the chip with an inter-block
path highlighted.

Figure (a) Figure (b)

Olympus-SoC also allowed us to optimize the design at the
top level (including IO), and the block level at the same time,
full flat. The above Figure (b) shows Olympus capability to
optimize partition to I/O paths.

As the block-level boundaries continue to be maintained,
any optimization-logic changes made to the blocks during
flat optimization were directly updated inside the blocks.
This type of dynamic updating in-situ is only possible with a
tool that has the capacity to support a flat full-chip view
while respecting logical and physical hierarchy.

MCMM full chip optimization flow of Olympus-SoC helped

reducing time required for timing closure while respecting

logical hierarchy for timing and physical hierarchy for

routing.

 Shielding of clock nets is possible on full chip routed

database

 Incremental DEF allows updating changes related to pre-

route/Custom routing (e.g. analog routing) or pads

modification which is done after moving to Olympus from

SoC-Encounter tool.

 Manual ECO implementation is easy to execute using

change file.

 MCMM TA convergence in 3 days using multi-cpu

(previously two weeks)

 Its capability of handling extremely large design with small

memory footprint enables integration of this tool seamlessly

into the existing design flow.

 Compute Statistics are reasonable

STEP TOTAL
MEMORY

CPU TIME

Import Physical Const. 23 GB 1.30 hr

Reading Timing Const. 26 GB ½ hr

Full Chip Optimization 44 GB 40 hr

Step Included in Optimization (This opt. is with 3 modes

and 2 corners+ setup, hold, transition and capacitance

fixing concurrently)

Import SPEF (Partition, Top,

HM)

3hr

We derived good benefits by using Olympus-SoC in our flow.

However, introduction of a new tool into any flow always

comes with some challenges. For example:

We were not able to close timing for two tricky clock

domains. This was on account of a floor planning limitation;

however the tool could have given some pointers or metrics

on the level of difficulty it was facing

We also found that some pad delays differed between the

sign-off tool and Olympus-SoC. This issue is now fixed. For

some of the pads Olympus-SoC timing calculations were

slightly more optimistic than signoff tool and for other IO

paths, Olympus-SoC timing were pessimistic so we masked

all IO paths/violations for some of the modes, which were

later fixed during an ECO loop

 During manual last-mile DRC/XTALK fixing, we think that

manual wire editing could be more users friendly and be

more dynamically aware of violations caused during editing.

This manual fixing consumed lot of time in the end

 In the final GDSII stream-out, the tool had some problems

with unification and understanding the empty GDS of hard

macros. This problem was fixed before final GDSII stream

out

 Routing over a particular Hard Macro where metal

blockage was defined. This caused “short” which was

discovered and debugged at costly signoff LVS stage

 Tool crashes unpredictably while doing manual DRC fixing

in GUI mode

Introduction

Device In Discussion

Challenges

New Design Flow

Flow Chart

Tool Setup & Timing Correlation

MCMM Variability Report

Full Chip Path Highlighted

Benefits

Potential Tool and Flow Improvement

Result and Conclusion

Design-Closure of Multi-Million Gate Chip Using Full Flat Optimization Technology of Olympus-SoC

Pooja Mehra* Johann Meleard** , STMicroelectronics *India **France

{ pooja.arora@st.com , johann.meleard@st.com }

Using Olympus–SoC for full-chip optimization and chip

finishing gave good improvement over our previous

timing closure approach. Therefore, we may consider

continued use of Olympus–SoC. It was easy to setup and

the correlation with sign-off tool was good throughout

the entire flow. On account of its capacity, relatively small

memory footprint , MCMM timing closure capability,

and the accuracy, we achieved the previously 2 weeks

TA convergence step in less than 3 days

using multi-cpu machine. Notably, we saved time in

signoff cycle by being in a position to run full chip flat ,

MCMM optimization that significantly reduced

the number of ECO iterations required for closure

mailto:{pooja.arora@st.com
mailto:johann.meleard@st.com

