
Superblock: A Method for Synthesizing Large High
Performance Designs without Hierarchy Limits

Murali Seshadri, Chris Mabee, Madhur Maheshwari, Raj Varada
Intel Corporation, Santa Clara, CA

Design Efficiency

lags tool /
infrastructure

capabilities

Design Efficiency Synthesis Blocks in Processors

Solution: Superblock… Superblock Flow Superblock Flow Internals

• Multi-core computing enables high thru-put CAD
• Superblock flow enables big block design with

legacy RTL optimized for small block synthesis

• Superblock flow builds constraints automatically from
constituent blocks

• Results show equal or better results for superblock
flow for big blocks with no RTL effort

• Design Efficiency increase!

Results – Grouping 1 Results – Grouping 2 Conclusions

2

4

6

8

0

4

8

12

2006 2007 2008 2009

N
u
m
b
e
r
o
f
c
o
re
s

65nm 45nm

Tulsa

Tigerton

Dunnington

Nehalem-EX

Better Design Efficiency?

• Better design efficiency through larger blocks?

• How to transition from small blocks to larger block
with legacy RTL?

• How to define the interfaces of the larger block?

• How to achieve good timing constraints for the larger

block?

Synthesis Blocks

Microprocessor Implementation

• Hierarchical RTL

implementation

• Smaller synthesis block size

• Reuse between generations

(legacy)

• Create a large block – “Superblock”

– Maintaining the same RTL structure

– Using the sub-block constraints

Sub-block Timing
Constraints

Superblock

Timing Constratints

Logical Hierarchy

A B C
A + B + C

Physical Block
(Superblock)

Mix of tool capability and automation used to
generate the Superblock hierarchy

Connectivity Generation Timing Constraint Generation Scan Reservation & Logic Synthesis

A
B

C

D E

U
n

it
1

Top

U
n

it
2

A
B

C

D E

Top

A_B

C_D E

Top

Hierarchical

Implementation

Expose Blocks to

same Hierarchy

Combine sub-blocks

to form Superblock

A_B_C

Superblock Interface is subset of sub-blocks’ ports

Worst timing (of the sub-blocks) picked

I1
I2
I3
I4
I5
I6

O1
O2
O3
O4
O5

I7
O6

A

C

D

I1

I2

I3
I4

I5

I6

O1

O2

O3

O5
O6

O7

I8 O8
I7

O4

B

Superblock mapped netlist

Superblock
connectivity +

sub-blocks’
RTL

Superblock
Constraint /

Override

Target Library

Logic Synthesis

Scan Reservation implemented to reserve area

(26 Synthesis blocks)

Cumulative Superblock Ratio

Number of logical cells 38883 38633 99.4%

Number of flops: 4518 4516 100.0%

Number of latches: 1623 1623 100.0%

Number of Sequentials 6141 6139 100.0%

Total Z (cm) 39.77 25.71 64.6%

WNS Internal (ps) 0 9

WNS External (ps) 0 7

SuperBlock1

Superblock flow yields

same cell count with

significant Z reduction

Cumulative Superblock Ratio

Number of logical cells 71083 68249 96.0%

Number of flops: 9581 9581 100.0%

Number of latches: 4829 4826 99.9%

Number of Sequentials 14410 14407 100.0%

Total Z (cm) 40.56 39.77 98.1%

WNS Internal (ps) 0 14

WNS External (ps) 0 51

SuperBlock2

Superblock flow yields

lesser cell count and Z

All the synthesizable logic in

ONE block; No RTL or

collateral effort

Input Design Collaterals

Superblock Hierarchy Generation

Logic Synthesis

Bottom up floorplan / Automatic P&R

1. RTL of smaller blocks

2. Chip level connectivity
3. Timing constraints of smaller blocks

4. Knowledge of Chip level floorplan

Scan Reservation

Logic Synthesis

Superblock Hierarchy Generation

Timing Constraint Generation

Connectivity Generation

We present a synthesis methodology to use
legacy RTL yet achieve higher design efficiency

